BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

520 related articles for article (PubMed ID: 19682444)

  • 21. D(+) galactosamine induced oxidative and nitrosative stress-mediated renal damage in rats via NF-κB and inducible nitric oxide synthase (iNOS) pathways is ameliorated by a polyphenol xanthone, mangiferin.
    Ghosh M; Das J; Sil PC
    Free Radic Res; 2012 Feb; 46(2):116-32. PubMed ID: 22118634
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nordihydroguairetic acid, a lignin, prevents oxidative stress and the development of diabetic nephropathy in rats.
    Anjaneyulu M; Chopra K
    Pharmacology; 2004 Sep; 72(1):42-50. PubMed ID: 15292654
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mangiferin attenuates diabetic nephropathy by inhibiting oxidative stress mediated signaling cascade, TNFα related and mitochondrial dependent apoptotic pathways in streptozotocin-induced diabetic rats.
    Pal PB; Sinha K; Sil PC
    PLoS One; 2014; 9(9):e107220. PubMed ID: 25233093
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of total glucosides of paeony on oxidative stress in the kidney from diabetic rats.
    Su J; Zhang P; Zhang JJ; Qi XM; Wu YG; Shen JJ
    Phytomedicine; 2010 Mar; 17(3-4):254-60. PubMed ID: 19758795
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protective role of antioxidative food factors in oxidative stress caused by hyperglycemia.
    Osawa T; Kato Y
    Ann N Y Acad Sci; 2005 Jun; 1043():440-51. PubMed ID: 16037265
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metformin attenuates streptozotocin-induced diabetic nephropathy in rats through modulation of oxidative stress genes expression.
    Alhaider AA; Korashy HM; Sayed-Ahmed MM; Mobark M; Kfoury H; Mansour MA
    Chem Biol Interact; 2011 Jul; 192(3):233-42. PubMed ID: 21457706
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Autologous transplantation of adipose-derived mesenchymal stem cells ameliorates streptozotocin-induced diabetic nephropathy in rats by inhibiting oxidative stress, pro-inflammatory cytokines and the p38 MAPK signaling pathway.
    Fang Y; Tian X; Bai S; Fan J; Hou W; Tong H; Li D
    Int J Mol Med; 2012 Jul; 30(1):85-92. PubMed ID: 22552764
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quercetin, an anti-oxidant bioflavonoid, attenuates diabetic nephropathy in rats.
    Anjaneyulu M; Chopra K
    Clin Exp Pharmacol Physiol; 2004 Apr; 31(4):244-8. PubMed ID: 15053821
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hexosamine induction of oxidative stress, hypertrophy and laminin expression in renal mesangial cells: effect of the anti-oxidant alpha-lipoic acid.
    Singh LP; Cheng DW; Kowluru R; Levi E; Jiang Y
    Cell Biochem Funct; 2007; 25(5):537-50. PubMed ID: 16892452
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protective effect of Lycium barbarum polysaccharide 4 on kidneys in streptozotocin-induced diabetic rats.
    Zhao R; Li QW; Li J; Zhang T
    Can J Physiol Pharmacol; 2009 Sep; 87(9):711-9. PubMed ID: 19794522
    [TBL] [Abstract][Full Text] [Related]  

  • 31. BAY 11-7082 ameliorates diabetic nephropathy by attenuating hyperglycemia-mediated oxidative stress and renal inflammation via NF-κB pathway.
    Kolati SR; Kasala ER; Bodduluru LN; Mahareddy JR; Uppulapu SK; Gogoi R; Barua CC; Lahkar M
    Environ Toxicol Pharmacol; 2015 Mar; 39(2):690-9. PubMed ID: 25704036
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mammalian target of rapamycin pathway blockade slows progression of diabetic kidney disease in rats.
    Lloberas N; Cruzado JM; Franquesa M; Herrero-Fresneda I; Torras J; Alperovich G; Rama I; Vidal A; Grinyó JM
    J Am Soc Nephrol; 2006 May; 17(5):1395-404. PubMed ID: 16597691
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cytoprotective effect of arjunolic acid in response to sodium fluoride mediated oxidative stress and cell death via necrotic pathway.
    Ghosh J; Das J; Manna P; Sil PC
    Toxicol In Vitro; 2008 Dec; 22(8):1918-26. PubMed ID: 18845235
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arjunolic acid: beneficial role in type 1 diabetes and its associated organ pathophysiology.
    Manna P; Sil PC
    Free Radic Res; 2012 Jul; 46(7):815-30. PubMed ID: 22486656
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Eicosapentaenoic acid restores diabetic tubular injury through regulating oxidative stress and mitochondrial apoptosis.
    Taneda S; Honda K; Tomidokoro K; Uto K; Nitta K; Oda H
    Am J Physiol Renal Physiol; 2010 Dec; 299(6):F1451-61. PubMed ID: 20844021
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diabetes increases susceptibility of primary cultures of rat proximal tubular cells to chemically induced injury.
    Zhong Q; Terlecky SR; Lash LH
    Toxicol Appl Pharmacol; 2009 Nov; 241(1):1-13. PubMed ID: 19682476
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A possible role of thioredoxin interacting protein in the pathogenesis of streptozotocin-induced diabetic nephropathy.
    Hamada Y; Fukagawa M
    Kobe J Med Sci; 2007; 53(1-2):53-61. PubMed ID: 17582205
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibitory effects of ursolic acid on hepatic polyol pathway and glucose production in streptozotocin-induced diabetic mice.
    Jang SM; Kim MJ; Choi MS; Kwon EY; Lee MK
    Metabolism; 2010 Apr; 59(4):512-9. PubMed ID: 19846180
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Taurine prevents arsenic-induced cardiac oxidative stress and apoptotic damage: role of NF-kappa B, p38 and JNK MAPK pathway.
    Ghosh J; Das J; Manna P; Sil PC
    Toxicol Appl Pharmacol; 2009 Oct; 240(1):73-87. PubMed ID: 19616567
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combination therapy with spironolactone and candesartan protects against streptozotocin-induced diabetic nephropathy in rats.
    Hofni A; El-Moselhy MA; Taye A; Khalifa MM
    Eur J Pharmacol; 2014 Dec; 744():173-82. PubMed ID: 25446917
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.