BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 19682466)

  • 21. Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break.
    Shroff R; Arbel-Eden A; Pilch D; Ira G; Bonner WM; Petrini JH; Haber JE; Lichten M
    Curr Biol; 2004 Oct; 14(19):1703-11. PubMed ID: 15458641
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Induction and rejoining of DNA double strand breaks assessed by H2AX phosphorylation in melanoma cells irradiated with proton and lithium beams.
    Ibañez IL; Bracalente C; Molinari BL; Palmieri MA; Policastro L; Kreiner AJ; Burlón AA; Valda A; Navalesi D; Davidson J; Davidson M; Vázquez M; Ozafrán M; Durán H
    Int J Radiat Oncol Biol Phys; 2009 Jul; 74(4):1226-35. PubMed ID: 19545788
    [TBL] [Abstract][Full Text] [Related]  

  • 23. H2AX phosphorylation at the sites of DNA double-strand breaks in cultivated mammalian cells and tissues.
    Firsanov DV; Solovjeva LV; Svetlova MP
    Clin Epigenetics; 2011 Aug; 2(2):283-97. PubMed ID: 22704343
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphorylation of H2AX histones in response to double-strand breaks and induction of premature chromatin condensation in hydroxyurea-treated root meristem cells of Raphanus sativus, Vicia faba, and Allium porrum.
    Rybaczek D; Maszewski J
    Protoplasma; 2007; 230(1-2):31-9. PubMed ID: 17111099
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin.
    Kinner A; Wu W; Staudt C; Iliakis G
    Nucleic Acids Res; 2008 Oct; 36(17):5678-94. PubMed ID: 18772227
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GammaH2AX and its role in DNA double-strand break repair.
    Fillingham J; Keogh MC; Krogan NJ
    Biochem Cell Biol; 2006 Aug; 84(4):568-77. PubMed ID: 16936829
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA double-strand break repair: a theoretical framework and its application.
    Murray PJ; Cornelissen B; Vallis KA; Chapman SJ
    J R Soc Interface; 2016 Jan; 13(114):20150679. PubMed ID: 26819332
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DNA double-strand breaks by Cr(VI) are targeted to euchromatin and cause ATR-dependent phosphorylation of histone H2AX and its ubiquitination.
    DeLoughery Z; Luczak MW; Ortega-Atienza S; Zhitkovich A
    Toxicol Sci; 2015 Jan; 143(1):54-63. PubMed ID: 25288669
    [TBL] [Abstract][Full Text] [Related]  

  • 29. FocAn: automated 3D analysis of DNA repair foci in image stacks acquired by confocal fluorescence microscopy.
    Memmel S; Sisario D; Zimmermann H; Sauer M; Sukhorukov VL; Djuzenova CS; Flentje M
    BMC Bioinformatics; 2020 Jan; 21(1):27. PubMed ID: 31992200
    [TBL] [Abstract][Full Text] [Related]  

  • 30. USP49 is a novel deubiquitylating enzyme for γ H2AX in DNA double-strand break repair.
    Matsui M; Kajita S; Tsuchiya Y; Torii W; Tamekuni S; Nishi R
    Gene; 2022 Jul; 833():146599. PubMed ID: 35598681
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The H2B ubiquitin ligase RNF40 cooperates with SUPT16H to induce dynamic changes in chromatin structure during DNA double-strand break repair.
    Kari V; Shchebet A; Neumann H; Johnsen SA
    Cell Cycle; 2011 Oct; 10(20):3495-504. PubMed ID: 22031019
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hypertonic saline enhances expression of phosphorylated histone H2AX after irradiation.
    Reitsema TJ; Banáth JP; MacPhail SH; Olive PL
    Radiat Res; 2004 Apr; 161(4):402-8. PubMed ID: 15038772
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Induction and repair of DNA double-strand breaks in human cells: dephosphorylation of histone H2AX and its inhibition by calyculin A.
    Antonelli F; Belli M; Cuttone G; Dini V; Esposito G; Simone G; Sorrentino E; Tabocchini MA
    Radiat Res; 2005 Oct; 164(4 Pt 2):514-7. PubMed ID: 16187759
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamics of γH2AX formation and elimination in mammalian cells after X-irradiation.
    Firsanov D; Vasilishina A; Kropotov A; Mikhailov V
    Biochimie; 2012 Nov; 94(11):2416-22. PubMed ID: 22766016
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Loop extrusion as a mechanism for formation of DNA damage repair foci.
    Arnould C; Rocher V; Finoux AL; Clouaire T; Li K; Zhou F; Caron P; Mangeot PE; Ricci EP; Mourad R; Haber JE; Noordermeer D; Legube G
    Nature; 2021 Feb; 590(7847):660-665. PubMed ID: 33597753
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DNA double-strand breaks in human induced pluripotent stem cell reprogramming and long-term in vitro culturing.
    Simara P; Tesarova L; Rehakova D; Matula P; Stejskal S; Hampl A; Koutna I
    Stem Cell Res Ther; 2017 Mar; 8(1):73. PubMed ID: 28327192
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assembly and function of DNA double-strand break repair foci in mammalian cells.
    Bekker-Jensen S; Mailand N
    DNA Repair (Amst); 2010 Dec; 9(12):1219-28. PubMed ID: 21035408
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of histone H2AX phosphorylation induced by DNA topoisomerase I and II inhibitors topotecan and mitoxantrone and by the DNA cross-linking agent cisplatin.
    Huang X; Okafuji M; Traganos F; Luther E; Holden E; Darzynkiewicz Z
    Cytometry A; 2004 Apr; 58(2):99-110. PubMed ID: 15057963
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Melanoma cells express elevated levels of phosphorylated histone H2AX foci.
    Warters RL; Adamson PJ; Pond CD; Leachman SA
    J Invest Dermatol; 2005 Apr; 124(4):807-17. PubMed ID: 15816840
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae.
    Tsukuda T; Fleming AB; Nickoloff JA; Osley MA
    Nature; 2005 Nov; 438(7066):379-83. PubMed ID: 16292314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.