BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 19682505)

  • 1. Selective adsorption of hydrocarbon-oxidizing Rhodococcus cells in a column with hydrophobized poly(acrylamide) cryogel.
    Kuyukina MS; Rubtsova EV; Ivshina IB; Ivanov RV; Lozinsky VI
    J Microbiol Methods; 2009 Oct; 79(1):76-81. PubMed ID: 19682505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization of hydrocarbon-oxidizing bacteria in poly(vinyl alcohol) cryogels hydrophobized using a biosurfactant.
    Kuyukina MS; Ivshina IB; Gavrin AY; Podorozhko EA; Lozinsky VI; Jeffree CE; Philp JC
    J Microbiol Methods; 2006 Jun; 65(3):596-603. PubMed ID: 16316701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Adsorptive immobilization of rhodococcal cells in hydrophobized derivatives of wide-pore polyacrylamide cryogel].
    Kuyukina MS; Ivshina IB; Rubtsova EV; Ivanov RV; Lozinskiĭ VI
    Prikl Biokhim Mikrobiol; 2011; 47(2):176-82. PubMed ID: 22808741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous species-specific PCR detection and viability testing of poly(vinyl alcohol) cryogel-entrapped Rhodococcus spp. after their exposure to petroleum hydrocarbons.
    Kuyukina MS; Ivshina IB; Serebrennikova MK; Rubtsova EV; Krivoruchko AV
    J Microbiol Methods; 2013 Aug; 94(2):135-140. PubMed ID: 23747656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosurfactant-enhanced immobilization of hydrocarbon-oxidizing Rhodococcus ruber on sawdust.
    Ivshina IB; Kuyukina MS; Krivoruchko AV; Plekhov OA; Naimark OB; Podorozhko EA; Lozinsky VI
    Appl Microbiol Biotechnol; 2013 Jun; 97(12):5315-27. PubMed ID: 23584244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Growth peculiarities of hydrocarbon-oxidizing rhodococcus and pseudomonads dissociates in mono- and mixed cultures].
    Mil'ko ES; Maksimovich MO; Lopatina LI; Porodenko EV
    Prikl Biokhim Mikrobiol; 2010; 46(5):538-42. PubMed ID: 21061599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Oxidative biotransformation of thioanisole by Rhodococcus rhodochrous IEGM 66 cells].
    El'kin AA; Grishko VV; Ivshina IB
    Prikl Biokhim Mikrobiol; 2010; 46(6):637-43. PubMed ID: 21261073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhodococcus sp. F92 immobilized on polyurethane foam shows ability to degrade various petroleum products.
    Quek E; Ting YP; Tan HM
    Bioresour Technol; 2006 Jan; 97(1):32-8. PubMed ID: 16154500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophobised sawdust as a carrier for immobilisation of the hydrocarbon-oxidizing bacterium Rhodococcus ruber.
    Podorozhko EA; Lozinsky VI; Ivshina IB; Kuyukina MS; Krivorutchko AB; Philp JC; Cunningham CJ
    Bioresour Technol; 2008 Apr; 99(6):2001-8. PubMed ID: 17481891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Adaptation of coimmobilized Rhodococcus cells to oil hydrocarbons in a column bioreactor].
    Serebrennikova MK; Kuiukina MS; Krivoruchko AV; Ivshina IB
    Prikl Biokhim Mikrobiol; 2014; 50(3):295-303. PubMed ID: 25757338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective transport and accumulation of alkanes by Rhodococcus erythropolis S+14He.
    Kim IS; Foght JM; Gray MR
    Biotechnol Bioeng; 2002 Dec; 80(6):650-9. PubMed ID: 12378606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL14.
    de Carvalho CC; da Fonseca MM
    FEMS Microbiol Ecol; 2005 Feb; 51(3):389-99. PubMed ID: 16329886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a novel continuous supermacroporous monolithic cryogel embedded with nanoparticles for protein chromatography.
    Yao K; Yun J; Shen S; Wang L; He X; Yu X
    J Chromatogr A; 2006 Mar; 1109(1):103-10. PubMed ID: 16455092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Action of ultraviolet radiation on hydrocarbon-oxidizing bacteria].
    Koronelli TV; Dermicheva SG; Korotaeva EV
    Mikrobiologiia; 1987; 56(6):1034-6. PubMed ID: 3130549
    [No Abstract]   [Full Text] [Related]  

  • 15. [Kinetics of the degradation of aliphatic hydrocarbons by the bacteria Rhodococcus ruber and Rhodococcus erythropolis].
    Zhukov DV; Murygina VP; Kaliuzhnyĭ SV
    Prikl Biokhim Mikrobiol; 2007; 43(6):657-63. PubMed ID: 18173107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial degradation of hydrocarbons as evidenced by respirometric analysis.
    Saadoun I; al-Akhras MA; Abu-Ashour J
    Microbios; 1999; 100(395):19-25. PubMed ID: 10582377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Esterase activity of hydrocarbon-oxidizing bacteria].
    Koronelli TV; Komarova TI; Krasnikova TI; Apukhtin VA; Sharygin AA
    Mikrobiologiia; 1986; 55(5):883-4. PubMed ID: 3102911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The properties of hydrocarbon-oxidizing bacteria isolated from the oilfields of Tatarstan, Western Siberia, and Vietnam].
    Borzenkov IA; Milekhina EI; Gotoeva MT; Rozanova EP; Beliaev SS
    Mikrobiologiia; 2006; 75(1):82-9. PubMed ID: 16579448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adhesion of Rhodococcus bacteria to solid hydrocarbons and enhanced biodegradation of these compounds.
    Ivshina IB; Krivoruchko AV; Kuyukina MS; Peshkur TA; Cunningham CJ
    Sci Rep; 2022 Dec; 12(1):21559. PubMed ID: 36513758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of butyric acid on physiologic activity of carbohydrate-oxidizing rhodococci].
    Guzev VS; Volde MI; Kulichevskaia IS; Lysak LV
    Mikrobiologiia; 2001; 70(3):313-20. PubMed ID: 11450452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.