These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 19682604)

  • 1. Endurance training improves gastrocnemius mitochondrial function despite increased susceptibility to permeability transition.
    Lumini-Oliveira J; Magalhães J; Pereira CV; Aleixo I; Oliveira PJ; Ascensão A
    Mitochondrion; 2009 Nov; 9(6):454-62. PubMed ID: 19682604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term hyperglycaemia decreases gastrocnemius susceptibility to permeability transition.
    Lumini-Oliveira J; Ascensão A; Pereira CV; Magalhães S; Marques F; Oliveira PJ; Magalhães J
    Eur J Clin Invest; 2010 Apr; 40(4):319-29. PubMed ID: 20486993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endurance training reverts heart mitochondrial dysfunction, permeability transition and apoptotic signaling in long-term severe hyperglycemia.
    Lumini-Oliveira J; Magalhães J; Pereira CV; Moreira AC; Oliveira PJ; Ascensão A
    Mitochondrion; 2011 Jan; 11(1):54-63. PubMed ID: 20654738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute exercise protects against calcium-induced cardiac mitochondrial permeability transition pore opening in doxorubicin-treated rats.
    Ascensão A; Lumini-Oliveira J; Machado NG; Ferreira RM; Gonçalves IO; Moreira AC; Marques F; Sardão VA; Oliveira PJ; Magalhães J
    Clin Sci (Lond); 2011 Jan; 120(1):37-49. PubMed ID: 20666733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indirubin-3'-oxime impairs mitochondrial oxidative phosphorylation and prevents mitochondrial permeability transition induction.
    Varela AT; Gomes AP; Simões AM; Teodoro JS; Duarte FV; Rolo AP; Palmeira CM
    Toxicol Appl Pharmacol; 2008 Dec; 233(2):179-85. PubMed ID: 18786556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abnormalities of mitochondrial functioning can partly explain the metabolic disorders encountered in sarcopenic gastrocnemius.
    Martin C; Dubouchaud H; Mosoni L; Chardigny JM; Oudot A; Fontaine E; Vergely C; Keriel C; Rochette L; Leverve X; Demaison L
    Aging Cell; 2007 Apr; 6(2):165-77. PubMed ID: 17286611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of hepatic mitochondrial bioenergetics is not a primary mechanism for the toxicity of methoprene - relevance for toxicological assessment.
    Monteiro JP; Oliveira PJ; Moreno AJ; Jurado AS
    Chemosphere; 2008 Jul; 72(9):1347-54. PubMed ID: 18511104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endurance training and chronic intermittent hypoxia modulate in vitro salicylate-induced hepatic mitochondrial dysfunction.
    Ascensão A; Gonçalves IO; Lumini-Oliveira J; Marques-Aleixo I; Dos Passos E; Rocha-Rodrigues S; Machado NG; Moreira AC; Oliveira PJ; Torrella JR; Magalhães J
    Mitochondrion; 2012 Nov; 12(6):607-16. PubMed ID: 23069012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Caffeine enhances the calcium-dependent cardiac mitochondrial permeability transition: relevance for caffeine toxicity.
    Sardão VA; Oliveira PJ; Moreno AJ
    Toxicol Appl Pharmacol; 2002 Feb; 179(1):50-6. PubMed ID: 11884236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro salicylate does not further impair aging-induced brain mitochondrial dysfunction.
    Marques-Aleixo I; Rocha-Rodrigues S; Santos-Alves E; Coxito PM; Passos E; Oliveira PJ; Magalhães J; Ascensão A
    Toxicology; 2012 Dec; 302(1):51-9. PubMed ID: 22967791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in specific lipids regulate BAX-induced mitochondrial permeability transition.
    Martínez-Abundis E; García N; Correa F; Franco M; Zazueta C
    FEBS J; 2007 Dec; 274(24):6500-10. PubMed ID: 18028444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exercise training in late middle-aged male Fischer 344 x Brown Norway F1-hybrid rats improves skeletal muscle aerobic function.
    Betik AC; Baker DJ; Krause DJ; McConkey MJ; Hepple RT
    Exp Physiol; 2008 Jul; 93(7):863-71. PubMed ID: 18356556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different timing of changes in mitochondrial functions following endurance training.
    Daussin FN; Rasseneur L; Bouitbir J; Charles AL; Dufour SP; Geny B; Burelle Y; Richard R
    Med Sci Sports Exerc; 2012 Feb; 44(2):217-24. PubMed ID: 21716149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cisplatin impairs rat liver mitochondrial functions by inducing changes on membrane ion permeability: prevention by thiol group protecting agents.
    Custódio JB; Cardoso CM; Santos MS; Almeida LM; Vicente JA; Fernandes MA
    Toxicology; 2009 May; 259(1-2):18-24. PubMed ID: 19428939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of mouse brain mitochondrial function after deprenyl treatment.
    Czerniczyniec A; Bustamante J; Lores-Arnaiz S
    Neuroscience; 2007 Jan; 144(2):685-93. PubMed ID: 17084986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study.
    Fernandes MA; Santos MS; Alpoim MC; Madeira VM; Vicente JA
    J Biochem Mol Toxicol; 2002; 16(2):53-63. PubMed ID: 11979422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of NH4Cl-induced systemic metabolic acidosis on kidney mitochondrial coupling and calcium transport in rats.
    Bento LM; Fagian MM; Vercesi AE; Gontijo JA
    Nephrol Dial Transplant; 2007 Oct; 22(10):2817-23. PubMed ID: 17556421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tetrandrine concentrations not affecting oxidative phosphorylation protect rat liver mitochondria from oxidative stress.
    Fernandes MA; Custódio JB; Santos MS; Moreno AJ; Vicente JA
    Mitochondrion; 2006 Aug; 6(4):176-85. PubMed ID: 16890028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential adaptation to endurance training between heart and gastrocnemius muscle mitochondria in rats.
    Murakami T; Shimomura Y; Fujitsuka N; Sugiyama S
    Biochem Mol Biol Int; 1995 Jun; 36(2):285-90. PubMed ID: 7663432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Role of nitric oxide in the development of the myocardial contractile reactions in trained animals].
    Shymans'ka TV; Hoshovs'ka IuV; Sahach VF
    Fiziol Zh (1994); 2010; 56(5):3-12. PubMed ID: 21265074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.