These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 19682610)

  • 1. S1 site residues of Lactococcus lactis prolidase affect substrate specificity and allosteric behaviour.
    Hu K; Tanaka T
    Biochim Biophys Acta; 2009 Dec; 1794(12):1715-24. PubMed ID: 19682610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charged residues on a flap-loop structure of Lactococcus lactis prolidase play critical roles in allosteric behavior and substrate inhibition.
    Chen JA; Tanaka T
    Biochim Biophys Acta; 2011 Dec; 1814(12):1677-85. PubMed ID: 21875695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of recombinant prolidase from Lactococcus lactis- changes in substrate specificity by metal cations, and allosteric behavior of the peptidase.
    Yang SI; Tanaka T
    FEBS J; 2008 Jan; 275(2):271-80. PubMed ID: 18070105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deregulation of allosteric response of Lactococcus lactis prolidase and its effects on enzyme activity.
    Zhang G; Chen JA; Tanaka T
    Biochim Biophys Acta; 2009 Jun; 1794(6):968-75. PubMed ID: 19336036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystallographic structure of recombinant Lactococcus lactis prolidase to support proposed structure-function relationships.
    Kgosisejo O; Chen JA; Grochulski P; Tanaka T
    Biochim Biophys Acta Proteins Proteom; 2017 May; 1865(5):473-480. PubMed ID: 28179139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and kinetic analysis of enzyme-substrate recognition by three recombinant lactococcal PepVs.
    Mori S; Miyamoto M; Kaneko S; Nirasawa S; Komba S; Kasumi T
    Arch Biochem Biophys; 2006 Oct; 454(2):137-45. PubMed ID: 16962986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Xaa-Pro dipeptidyl aminopeptidase for specific cleavage of glucagon and glucagon-like peptide 1 from fusion proteins.
    Vernet E; Pedersen MØ; Thøgersen H; Shaw AC
    Protein Expr Purif; 2020 Jun; 170():105590. PubMed ID: 32007557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of a novel prolidase from Deinococcus radiodurans identifies new subfamily of bacterial prolidases.
    Are VN; Jamdar SN; Ghosh B; Goyal VD; Kumar A; Neema S; Gadre R; Makde RD
    Proteins; 2017 Dec; 85(12):2239-2251. PubMed ID: 28929533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure and biochemical investigations reveal novel mode of substrate selectivity and illuminate substrate inhibition and allostericity in a subfamily of Xaa-Pro dipeptidases.
    Are VN; Kumar A; Kumar S; Goyal VD; Ghosh B; Bhatnagar D; Jamdar SN; Makde RD
    Biochim Biophys Acta Proteins Proteom; 2017 Feb; 1865(2):153-164. PubMed ID: 27816563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of two proline dipeptidases (prolidases) from the hyperthermophilic archaeon Pyrococcus horikoshii.
    Theriot CM; Tove SR; Grunden AM
    Appl Microbiol Biotechnol; 2010 Mar; 86(1):177-88. PubMed ID: 19784642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of the substrate-binding region of the subtilisin-like, cell-envelope proteinase of Lactococcus lactis.
    Siezen RJ; Bruinenberg PG; Vos P; van Alen-Boerrigter I; Nijhuis M; Alting AC; Exterkate FA; de Vos WM
    Protein Eng; 1993 Nov; 6(8):927-37. PubMed ID: 8309942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure, mechanism, and substrate profile for Sco3058: the closest bacterial homologue to human renal dipeptidase .
    Cummings JA; Nguyen TT; Fedorov AA; Kolb P; Xu C; Fedorov EV; Shoichet BK; Barondeau DP; Almo SC; Raushel FM
    Biochemistry; 2010 Jan; 49(3):611-22. PubMed ID: 20000809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate-assisted movement of the catalytic Lys 215 during domain closure: site-directed mutagenesis studies of human 3-phosphoglycerate kinase.
    Flachner B; Varga A; Szabó J; Barna L; Hajdú I; Gyimesi G; Závodszky P; Vas M
    Biochemistry; 2005 Dec; 44(51):16853-65. PubMed ID: 16363799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-directed mutagenesis of an alkaline phytase: influencing specificity, activity and stability in acidic milieu.
    Tran TT; Mamo G; Búxo L; Le NN; Gaber Y; Mattiasson B; Hatti-Kaul R
    Enzyme Microb Technol; 2011 Jul; 49(2):177-82. PubMed ID: 22112406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophilic residues surrounding the S1 and S2 pockets contribute to dimerisation and catalysis in human dipeptidyl peptidase 8 (DP8).
    Pitman MR; Menz RI; Abbott CA
    Biol Chem; 2010 Aug; 391(8):959-72. PubMed ID: 20536396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular properties of the glucosaminidase AcmA from Lactococcus lactis MG1363: mutational and biochemical analyses.
    Inagaki N; Iguchi A; Yokoyama T; Yokoi KJ; Ono Y; Yamakawa A; Taketo A; Kodaira K
    Gene; 2009 Nov; 447(2):61-71. PubMed ID: 19686822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-range interaction between the enzyme active site and a distant allosteric site in the human mitochondrial NAD(P)+-dependent malic enzyme.
    Hsieh JY; Su KL; Ho PT; Hung HC
    Arch Biochem Biophys; 2009 Jul; 487(1):19-27. PubMed ID: 19464998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutation analysis of the interaction of B-type cytochrome c oxidase with its natural substrate cytochrome c-551.
    Kabashima Y; Ueda N; Sone N; Sakamoto J
    J Biosci Bioeng; 2010 Apr; 109(4):325-30. PubMed ID: 20226371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for prolidase deficiency disease mechanisms.
    Wilk P; Uehlein M; Piwowarczyk R; Dobbek H; Mueller U; Weiss MS
    FEBS J; 2018 Sep; 285(18):3422-3441. PubMed ID: 30066404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directed evolution of alpha-aspartyl dipeptidase from Salmonella typhimurium.
    Kong X; Liu Y; Gou X; Zhu S; Zhang H; Wang X; Zhang J
    Biochem Biophys Res Commun; 2001 Nov; 289(1):137-42. PubMed ID: 11708790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.