BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 19682690)

  • 1. Fatigue creep damage at the cement-bone interface: an experimental and a micro-mechanical finite element study.
    Waanders D; Janssen D; Miller MA; Mann KA; Verdonschot N
    J Biomech; 2009 Nov; 42(15):2513-9. PubMed ID: 19682690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of cement creep and cement fatigue damage on the micromechanics of the cement-bone interface.
    Waanders D; Janssen D; Mann KA; Verdonschot N
    J Biomech; 2010 Nov; 43(15):3028-34. PubMed ID: 20692663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro-mechanical modeling of the cement-bone interface: the effect of friction, morphology and material properties on the micromechanical response.
    Janssen D; Mann KA; Verdonschot N
    J Biomech; 2008 Nov; 41(15):3158-63. PubMed ID: 18848699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element simulation of cement-bone interface micromechanics: a comparison to experimental results.
    Janssen D; Mann KA; Verdonschot N
    J Orthop Res; 2009 Oct; 27(10):1312-8. PubMed ID: 19340877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanical effects of different levels of cement penetration at the cement-bone interface.
    Waanders D; Janssen D; Mann KA; Verdonschot N
    J Biomech; 2010 Apr; 43(6):1167-75. PubMed ID: 20022010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The behavior of the micro-mechanical cement-bone interface affects the cement failure in total hip replacement.
    Waanders D; Janssen D; Mann KA; Verdonschot N
    J Biomech; 2011 Jan; 44(2):228-34. PubMed ID: 21036358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interface micromechanics of transverse sections from retrieved cemented hip reconstructions: an experimental and finite element comparison.
    Waanders D; Janssen D; Berahmani S; Miller MA; Mann KA; Verdonschot N
    J Mater Sci Mater Med; 2012 Aug; 23(8):2023-35. PubMed ID: 22678039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prevention of mesh-dependent damage growth in finite element simulations of crack formation in acrylic bone cement.
    Stolk J; Verdonschot N; Mann KA; Huiskes R
    J Biomech; 2003 Jun; 36(6):861-71. PubMed ID: 12742454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does increased bone-cement interface strength have negative consequences for bulk cement integrity? A finite element study.
    Pérez MA; García-Aznar JM; Doblaré M
    Ann Biomed Eng; 2009 Mar; 37(3):454-66. PubMed ID: 19085106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical implications of interfacial defects between femoral hip implants and cement: a finite element analysis of interfacial gaps and interfacial porosity.
    Scheerlinck T; Broos J; Janssen D; Verdonschot N
    Proc Inst Mech Eng H; 2008 Oct; 222(7):1037-47. PubMed ID: 19024152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subsidence of THA stems due to acrylic cement creep is extremely sensitive to interface friction.
    Verdonschot N; Huiskes R
    J Biomech; 1996 Dec; 29(12):1569-75. PubMed ID: 8945655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic creep and mechanical characteristics of SmartSet GHV bone cement.
    Liu CZ; Green SM; Watkins ND; Baker D; McCaskie AW
    J Mater Sci Mater Med; 2005 Feb; 16(2):153-60. PubMed ID: 15744604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shear fatigue micromechanics of the cement-bone interface: An in vitro study using digital image correlation techniques.
    Mann KA; Miller MA; Race A; Verdonschot N
    J Orthop Res; 2009 Mar; 27(3):340-6. PubMed ID: 18846550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fatigue damage model for the cement-bone interface.
    Kim DG; Miller MA; Mann KA
    J Biomech; 2004 Oct; 37(10):1505-12. PubMed ID: 15336925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical effects of morphological variations of the cortical wall at the bone-cement interface.
    Zhang CL; Shen GQ; Zhu KP; Liu DX
    J Orthop Surg Res; 2016 Jul; 11(1):72. PubMed ID: 27369636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accounting for inclusions and voids allows the prediction of tensile fatigue life of bone cement.
    Coultrup OJ; Browne M; Hunt C; Taylor M
    J Biomech Eng; 2009 May; 131(5):051007. PubMed ID: 19388777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Static and fatigue mechanical characterizations of variable diameter fibers reinforced bone cement.
    Zhou Y; Yue W; Li C; Mason JJ
    J Mater Sci Mater Med; 2009 Feb; 20(2):633-41. PubMed ID: 18936882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative FEA of the debonding process in different concepts of cemented hip implants.
    Pérez MA; García-Aznar JM; Doblaré M; Seral B; Seral F
    Med Eng Phys; 2006 Jul; 28(6):525-33. PubMed ID: 16257253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Creep dominates tensile fatigue damage of the cement-bone interface.
    Kim DG; Miller MA; Mann KA
    J Orthop Res; 2004 May; 22(3):633-40. PubMed ID: 15099645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and computational models to investigate the effect of adhesion on the mechanical properties of bone-cement composites.
    Helgason B; Stirnimann P; Widmer R; Ferguson SJ
    J Biomed Mater Res B Appl Biomater; 2011 Oct; 99(1):191-8. PubMed ID: 21714083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.