These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 19682690)

  • 21. 3D real-time micromechanical compressive behaviour of bone-cement interface: experimental and finite element studies.
    Tozzi G; Zhang QH; Tong J
    J Biomech; 2012 Jan; 45(2):356-63. PubMed ID: 22055427
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-reinforced composite poly(methyl methacrylate): static and fatigue properties.
    Gilbert JL; Ney DS; Lautenschlager EP
    Biomaterials; 1995 Sep; 16(14):1043-55. PubMed ID: 8519925
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The use of a constant load to generate equivalent viscoelastic strain in finite element analysis of cemented prosthetic joints subjected to cyclic loading.
    Lu Z; McKellop HA
    Proc Inst Mech Eng H; 2011 Aug; 225(8):809-20. PubMed ID: 21922957
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microdamage accumulation in the cement layer of hip replacements under flexural loading.
    McCormack BA; Prendergast PJ
    J Biomech; 1999 May; 32(5):467-75. PubMed ID: 10327000
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Creep and fatigue behavior of a novel 2-component paste-like formulation of acrylic bone cements.
    Köster U; Jaeger R; Bardts M; Wahnes C; Büchner H; Kühn KD; Vogt S
    J Mater Sci Mater Med; 2013 Jun; 24(6):1395-406. PubMed ID: 23563979
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of interfacial crack and implant material on mixed-mode stress intensity factor and prediction of interface failure of cemented acetabular cup.
    Kumar A; Ghosh R; Kumar R
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):1844-1856. PubMed ID: 31769210
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Micro-mechanical damage of trabecular bone-cement interface under selected loading conditions: a finite element study.
    Zhang QH; Tozzi G; Tong J
    Comput Methods Biomech Biomed Engin; 2014; 17(3):230-8. PubMed ID: 22515517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A modified PMMA cement (Sub-cement) for accelerated fatigue testing of cemented implant constructs using cadaveric bone.
    Race A; Miller MA; Mann KA
    J Biomech; 2008 Oct; 41(14):3017-23. PubMed ID: 18774136
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the importance of considering porosity when simulating the fatigue of bone cement.
    Jeffers JR; Browne M; Roques A; Taylor M
    J Biomech Eng; 2005 Aug; 127(4):563-70. PubMed ID: 16121525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acrylic cement creeps but does not allow much subsidence of femoral stems.
    Verdonschot N; Huiskes R
    J Bone Joint Surg Br; 1997 Jul; 79(4):665-9. PubMed ID: 9250762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Damage accumulation, fatigue and creep behaviour of vacuum mixed bone cement.
    Jeffers JR; Browne M; Taylor M
    Biomaterials; 2005 Sep; 26(27):5532-41. PubMed ID: 15860209
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cement mantle fatigue failure in total hip replacement: experimental and computational testing.
    Jeffers JR; Browne M; Lennon AB; Prendergast PJ; Taylor M
    J Biomech; 2007; 40(7):1525-33. PubMed ID: 17070816
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Creep-assisted slow crack growth in bio-inspired dental multilayers.
    Du J; Niu X; Soboyejo W
    J Mech Behav Biomed Mater; 2015 Jun; 46():41-8. PubMed ID: 25771255
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental micromechanics of the cement-bone interface.
    Mann KA; Miller MA; Cleary RJ; Janssen D; Verdonschot N
    J Orthop Res; 2008 Jun; 26(6):872-9. PubMed ID: 18253965
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of cement thickness and bonding on the failure loads of CAD/CAM ceramic crowns: multi-physics FEA modeling and monotonic testing.
    May LG; Kelly JR; Bottino MA; Hill T
    Dent Mater; 2012 Aug; 28(8):e99-109. PubMed ID: 22595741
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cement mantle stress under retroversion torque at heel-strike.
    Afsharpoya B; Barton DC; Fisher J; Purbach B; Wroblewski M; Stewart TD
    Med Eng Phys; 2009 Dec; 31(10):1323-30. PubMed ID: 19879794
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The use of complementary non-destructive evaluation methods to evaluate the integrity of the cement-bone interface.
    Leung SY; New AM; Browne M
    Proc Inst Mech Eng H; 2009 Jan; 223(1):75-86. PubMed ID: 19239069
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative finite element analysis of the debonding process in different concepts of cemented hip implants.
    Pérez MA; Palacios J
    Ann Biomed Eng; 2010 Jun; 38(6):2093-106. PubMed ID: 20232148
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Creep behavior of hand-mixed Simplex P bone cement under cyclic tensile loading.
    Verdonschot N; Huiskes R
    J Appl Biomater; 1994; 5(3):235-43. PubMed ID: 10147450
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bone-cement interface of the glenoid component: stress analysis for varying cement thickness.
    Terrier A; Büchler P; Farron A
    Clin Biomech (Bristol, Avon); 2005 Aug; 20(7):710-7. PubMed ID: 15961203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.