These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 19682922)
1. Ionization mechanism of the ambient pressure pyroelectric ion source (APPIS) and its applications to chemical nerve agent detection. Neidholdt EL; Beauchamp JL J Am Soc Mass Spectrom; 2009 Nov; 20(11):2093-9. PubMed ID: 19682922 [TBL] [Abstract][Full Text] [Related]
2. Ion mobility spectrometric analysis of vaporous chemical warfare agents by the instrument with corona discharge ionization ammonia dopant ambient temperature operation. Satoh T; Kishi S; Nagashima H; Tachikawa M; Kanamori-Kataoka M; Nakagawa T; Kitagawa N; Tokita K; Yamamoto S; Seto Y Anal Chim Acta; 2015 Mar; 865():39-52. PubMed ID: 25732583 [TBL] [Abstract][Full Text] [Related]
3. Development of a gas-cylinder-free plasma desorption/ionization system for on-site detection of chemical warfare agents. Iwai T; Kakegawa K; Aida M; Nagashima H; Nagoya T; Kanamori-Kataoka M; Miyahara H; Seto Y; Okino A Anal Chem; 2015 Jun; 87(11):5707-15. PubMed ID: 25958918 [TBL] [Abstract][Full Text] [Related]
4. Compact ambient pressure pyroelectric ion source for mass spectrometry. Neidholdt EL; Beauchamp JL Anal Chem; 2007 May; 79(10):3945-8. PubMed ID: 17432828 [TBL] [Abstract][Full Text] [Related]
6. Using metal complex ion-molecule reactions in a miniature rectilinear ion trap mass spectrometer to detect chemical warfare agents. Graichen AM; Vachet RW J Am Soc Mass Spectrom; 2013 Jun; 24(6):917-25. PubMed ID: 23532782 [TBL] [Abstract][Full Text] [Related]
7. Measurement of breakthrough volumes of volatile chemical warfare agents on a poly(2,6-diphenylphenylene oxide)-based adsorbent and application to thermal desorption-gas chromatography/mass spectrometric analysis. Kanamori-Kataoka M; Seto Y J Chromatogr A; 2015 Sep; 1410():19-27. PubMed ID: 26239699 [TBL] [Abstract][Full Text] [Related]
8. Analysis of the degradation compounds of chemical warfare agents using liquid chromatography/mass spectrometry. Smith JR; Shih ML J Appl Toxicol; 2001 Dec; 21 Suppl 1():S27-34. PubMed ID: 11920917 [TBL] [Abstract][Full Text] [Related]
9. Kinetics of ion-molecule reactions with dimethyl methylphosphonate at 298 K for chemical ionization mass spectrometry detection of GX. Midey AJ; Miller TM; Viggiano AA J Phys Chem A; 2009 Apr; 113(17):4982-9. PubMed ID: 19385679 [TBL] [Abstract][Full Text] [Related]
10. Importance of gas-phase proton affinities in determining the electrospray ionization response for analytes and solvents. Amad MH; Cech NB; Jackson GS; Enke CG J Mass Spectrom; 2000 Jul; 35(7):784-9. PubMed ID: 10934432 [TBL] [Abstract][Full Text] [Related]
11. Alternately pulsed nanoelectrospray ionization/atmospheric pressure chemical ionization for ion/ion reactions in an electrodynamic ion trap. Liang X; Xia Y; McLuckey SA Anal Chem; 2006 May; 78(9):3208-12. PubMed ID: 16643016 [TBL] [Abstract][Full Text] [Related]
12. The ionization process of chemical warfare agent simulants in low temperature plasma ionization. Li B; Kong J; Zhang L; Fu W; Zhang Z; Li C Eur J Mass Spectrom (Chichester); 2020 Oct; 26(5):341-350. PubMed ID: 32819167 [TBL] [Abstract][Full Text] [Related]
13. Analysis of VX on soil particles using ion trap secondary ion mass spectrometry. Groenewold GS; Appelhans AD; Gresham GL; Olson JE; Jeffery M; Wright JB Anal Chem; 1999 Jul; 71(13):2318-23. PubMed ID: 10405600 [TBL] [Abstract][Full Text] [Related]
14. Formation and reactions of negative ions relevant to chemical ionization mass spectrometry. I. CL mass spectra of organic compounds produced by F- reactions. Tiernan TO; Chang C; Cheng CC Environ Health Perspect; 1980 Jun; 36():47-62. PubMed ID: 7428746 [TBL] [Abstract][Full Text] [Related]
15. Analysis of the enantiomers of VX using normal-phase chiral liquid chromatography with atmospheric pressure chemical ionization-mass spectrometry. Smith JR J Anal Toxicol; 2004; 28(5):390-2. PubMed ID: 15239861 [TBL] [Abstract][Full Text] [Related]
16. Detection of nerve agents using proton transfer reaction mass spectrometry with ammonia as reagent gas. Ringer JM Eur J Mass Spectrom (Chichester); 2013; 19(3):175-85. PubMed ID: 24308198 [TBL] [Abstract][Full Text] [Related]
17. Proton Affinity Values of Fentanyl and Fentanyl Analogues Pertinent to Ambient Ionization and Detection. Denis EH; Bade JL; Renslow RS; Morrison KA; Nims MK; Govind N; Ewing RG J Am Soc Mass Spectrom; 2022 Mar; 33(3):482-490. PubMed ID: 35041405 [TBL] [Abstract][Full Text] [Related]
18. Identification of chemical warfare agents from vapor samples using a field-portable capillary gas chromatography/membrane-interfaced electron ionization quadrupole mass spectrometry instrument with Tri-Bed concentrator. Nagashima H; Kondo T; Nagoya T; Ikeda T; Kurimata N; Unoke S; Seto Y J Chromatogr A; 2015 Aug; 1406():279-90. PubMed ID: 26118803 [TBL] [Abstract][Full Text] [Related]
19. Humidity Effects on Fragmentation in Plasma-Based Ambient Ionization Sources. Newsome GA; Ackerman LK; Johnson KJ J Am Soc Mass Spectrom; 2016 Jan; 27(1):135-43. PubMed ID: 26384684 [TBL] [Abstract][Full Text] [Related]
20. Proton-bound cluster ions in ion mobility spectrometry. Ewing RG; Eiceman GA; Stone JA Int J Mass Spectrom Ion Process; 1999 Oct; 193(1):57-68. PubMed ID: 11543494 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]