These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 19682996)

  • 1. Critical oxygen partial pressures and maximal tracheal conductances for Drosophila melanogaster reared for multiple generations in hypoxia or hyperoxia.
    Klok CJ; Kaiser A; Lighton JR; Harrison JF
    J Insect Physiol; 2010 May; 56(5):461-9. PubMed ID: 19682996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plastic and evolved responses of larval tracheae and mass to varying atmospheric oxygen content in Drosophila melanogaster.
    Henry JR; Harrison JF
    J Exp Biol; 2004 Sep; 207(Pt 20):3559-67. PubMed ID: 15339952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute and chronic effects of atmospheric oxygen on the feeding behavior of Drosophila melanogaster larvae.
    Farzin M; Albert T; Pierce N; VandenBrooks JM; Dodge T; Harrison JF
    J Insect Physiol; 2014 Sep; 68():23-9. PubMed ID: 25008193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multigenerational Effects of Rearing Atmospheric Oxygen Level on the Tracheal Dimensions and Diffusing Capacities of Pupal and Adult Drosophila melanogaster.
    Klok CJ; Kaiser A; Socha JJ; Lee WK; Harrison JF
    Adv Exp Med Biol; 2016; 903():285-300. PubMed ID: 27343104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactive effects of rearing temperature and oxygen on the development of Drosophila melanogaster.
    Frazier MR; Woods HA; Harrison JF
    Physiol Biochem Zool; 2001; 74(5):641-50. PubMed ID: 11517449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental plasticity and stability in the tracheal networks supplying Drosophila flight muscle in response to rearing oxygen level.
    Harrison JF; Waters JS; Biddulph TA; Kovacevic A; Klok CJ; Socha JJ
    J Insect Physiol; 2018 Apr; 106(Pt 3):189-198. PubMed ID: 28927826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single and multigenerational responses of body mass to atmospheric oxygen concentrations in Drosophila melanogaster : evidence for roles of plasticity and evolution.
    Klok CJ; Hubb AJ; Harrison JF
    J Evol Biol; 2009 Dec; 22(12):2496-504. PubMed ID: 19878502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental changes in hypoxic exposure and responses to anoxia in Drosophila melanogaster.
    Callier V; Hand SC; Campbell JB; Biddulph T; Harrison JF
    J Exp Biol; 2015 Sep; 218(Pt 18):2927-34. PubMed ID: 26206351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of developmental stage on the sensitivity of cell and body size to hypoxia in Drosophila melanogaster.
    Heinrich EC; Farzin M; Klok CJ; Harrison JF
    J Exp Biol; 2011 May; 214(Pt 9):1419-27. PubMed ID: 21490250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The effect of altered oxygen partial pressure on the resisitance to hypoxia and expression of oxygen-sensitive genes in Drosophila melanogaster].
    Berezovs'kyĭ VIa; Chaka OH; Litovka IH; Levashov MI; Ianko RV
    Fiziol Zh (1994); 2014; 60(4):97-104. PubMed ID: 25335240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A test of the oxidative damage hypothesis for discontinuous gas exchange in the locust Locusta migratoria.
    Matthews PG; Snelling EP; Seymour RS; White CR
    Biol Lett; 2012 Aug; 8(4):682-4. PubMed ID: 22491761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supply and demand: How does variation in atmospheric oxygen during development affect insect tracheal and mitochondrial networks?
    VandenBrooks JM; Gstrein G; Harmon J; Friedman J; Olsen M; Ward A; Parker G
    J Insect Physiol; 2018 Apr; 106(Pt 3):217-223. PubMed ID: 29122550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atmospheric hypoxia limits selection for large body size in insects.
    Klok CJ; Harrison JF
    PLoS One; 2009; 4(1):e3876. PubMed ID: 19127286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen uptake and local Po2 profiles in submerged larvae of phaeoxantha klugii (Coleoptera: Cicindelidae), as well as their metabolic rate in air.
    Zerm M; Zinkler D; Adis J
    Physiol Biochem Zool; 2004; 77(3):378-89. PubMed ID: 15286912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen-induced changes in hemoglobin expression in Drosophila.
    Gleixner E; Abriss D; Adryan B; Kraemer M; Gerlach F; Schuh R; Burmester T; Hankeln T
    FEBS J; 2008 Oct; 275(20):5108-16. PubMed ID: 18795948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of oxygen concentration and pressure on Drosophila melanogaster: oxidative stress, mitochondrial activity, and survivorship.
    Bosco G; Clamer M; Messulam E; Dare C; Yang Z; Zordan M; Reggiani C; Hu Q; Megighian A
    Arch Insect Biochem Physiol; 2015 Apr; 88(4):222-34. PubMed ID: 25529352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of temperature on responses to anoxia and oxygen reperfusion in Drosophila melanogaster.
    Schilman PE; Waters JS; Harrison JF; Lighton JR
    J Exp Biol; 2011 Apr; 214(Pt 8):1271-5. PubMed ID: 21430203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Body size is not critical for critical PO₂ in scarabaeid and tenebrionid beetles.
    Lease HM; Klok CJ; Kaiser A; Harrison JF
    J Exp Biol; 2012 Jul; 215(Pt 14):2524-33. PubMed ID: 22723492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of reduced oxygen in the developmental physiology of growth and metamorphosis initiation in Drosophila melanogaster.
    Callier V; Shingleton AW; Brent CS; Ghosh SM; Kim J; Harrison JF
    J Exp Biol; 2013 Dec; 216(Pt 23):4334-40. PubMed ID: 24259256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lifespan and oxidative stress show a non-linear response to atmospheric oxygen in Drosophila.
    Rascón B; Harrison JF
    J Exp Biol; 2010 Oct; 213(Pt 20):3441-8. PubMed ID: 20889824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.