BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

536 related articles for article (PubMed ID: 19683001)

  • 1. A mechanism for histone chaperoning activity of nucleoplasmin: thermodynamic and structural models.
    Taneva SG; Bañuelos S; Falces J; Arregi I; Muga A; Konarev PV; Svergun DI; Velázquez-Campoy A; Urbaneja MA
    J Mol Biol; 2009 Oct; 393(2):448-63. PubMed ID: 19683001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleoplasmin-mediated unfolding of chromatin involves the displacement of linker-associated chromatin proteins.
    Ramos I; Prado A; Finn RM; Muga A; Ausió J
    Biochemistry; 2005 Jun; 44(23):8274-81. PubMed ID: 15938617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nuclear transport machinery recognizes nucleoplasmin-histone complexes.
    Arregi I; Falces J; Bañuelos S; Urbaneja MA; Taneva SG
    Biochemistry; 2011 Aug; 50(33):7104-10. PubMed ID: 21780770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structure and function of Xenopus NO38-core, a histone chaperone in the nucleolus.
    Namboodiri VM; Akey IV; Schmidt-Zachmann MS; Head JF; Akey CW
    Structure; 2004 Dec; 12(12):2149-60. PubMed ID: 15576029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. p300-mediated acetylation facilitates the transfer of histone H2A-H2B dimers from nucleosomes to a histone chaperone.
    Ito T; Ikehara T; Nakagawa T; Kraus WL; Muramatsu M
    Genes Dev; 2000 Aug; 14(15):1899-907. PubMed ID: 10921904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification of yeast histones competent for nucleosome assembly in vitro.
    Fukuma M; Hiraoka Y; Sakurai H; Fukasawa T
    Yeast; 1994 Mar; 10(3):319-31. PubMed ID: 8017102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of nucleoplasmin in chromatin assembly and disassembly.
    Laskey RA; Mills AD; Philpott A; Leno GH; Dilworth SM; Dingwall C
    Philos Trans R Soc Lond B Biol Sci; 1993 Mar; 339(1289):263-9; discussion 268-9. PubMed ID: 8098530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The histone binding protein nucleoplasmin does not facilitate binding of transcription factor IIIA to nucleosomal Xenopus laevis 5S rRNA genes.
    Howe L; Itoh T; Katagiri C; Ausio J
    Biochemistry; 1998 Feb; 37(5):1174-7. PubMed ID: 9477940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophobic and acidic moments of a nucleoplasmin NP-core chaperone.
    Silverman BD
    J Biomol Struct Dyn; 2006 Aug; 24(1):49-56. PubMed ID: 16780375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Quantitative Characterization of Nucleoplasmin/Histone Complexes Reveals Chaperone Versatility.
    Fernández-Rivero N; Franco A; Velázquez-Campoy A; Alonso E; Muga A; Prado A
    Sci Rep; 2016 Aug; 6():32114. PubMed ID: 27558753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly and disassembly of nucleosome core particles containing histone variants by human nucleosome assembly protein I.
    Okuwaki M; Kato K; Shimahara H; Tate S; Nagata K
    Mol Cell Biol; 2005 Dec; 25(23):10639-51. PubMed ID: 16287874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remodeling somatic nuclei in Xenopus laevis egg extracts: molecular mechanisms for the selective release of histones H1 and H1(0) from chromatin and the acquisition of transcriptional competence.
    Dimitrov S; Wolffe AP
    EMBO J; 1996 Nov; 15(21):5897-906. PubMed ID: 8918467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of nucleosomes consisting of the human testis/sperm-specific histone H2B variant (hTSH2B).
    Li A; Maffey AH; Abbott WD; Conde e Silva N; Prunell A; Siino J; Churikov D; Zalensky AO; Ausió J
    Biochemistry; 2005 Feb; 44(7):2529-35. PubMed ID: 15709765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric linker histone association directs the asymmetric rearrangement of core histone interactions in a positioned nucleosome containing a thyroid hormone response element.
    Guschin D; Chandler S; Wolffe AP
    Biochemistry; 1998 Jun; 37(24):8629-36. PubMed ID: 9628724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remodeling of sperm chromatin induced in egg extracts of amphibians.
    Katagiri C; Ohsumi K
    Int J Dev Biol; 1994 Jun; 38(2):209-16. PubMed ID: 7981030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physicochemical analysis of electrostatic foundation for DNA-protein interactions in chromatin transformations.
    Korolev N; Vorontsova OV; Nordenskiöld L
    Prog Biophys Mol Biol; 2007; 95(1-3):23-49. PubMed ID: 17291569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histone release during transcription: NAP1 forms a complex with H2A and H2B and facilitates a topologically dependent release of H3 and H4 from the nucleosome.
    Levchenko V; Jackson V
    Biochemistry; 2004 Mar; 43(9):2359-72. PubMed ID: 14992573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutation of the small acidic tract A1 drastically reduces nucleoplasmin activity.
    Salvany L; Chiva M; Arnan C; Ausió J; Subirana JA; Saperas N
    FEBS Lett; 2004 Oct; 576(3):353-7. PubMed ID: 15498562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recognition of nucleoplasmin by its nuclear transport receptor importin α/β: insights into a complete import complex.
    Falces J; Arregi I; Konarev PV; Urbaneja MA; Svergun DI; Taneva SG; Bañuelos S
    Biochemistry; 2010 Nov; 49(45):9756-69. PubMed ID: 20925424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation mechanism of the nuclear chaperone nucleoplasmin: role of the core domain.
    Bañuelos S; Hierro A; Arizmendi JM; Montoya G; Prado A; Muga A
    J Mol Biol; 2003 Nov; 334(3):585-93. PubMed ID: 14623196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.