BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 19683002)

  • 1. Crystal structures of glycosyltransferase UGT78G1 reveal the molecular basis for glycosylation and deglycosylation of (iso)flavonoids.
    Modolo LV; Li L; Pan H; Blount JW; Dixon RA; Wang X
    J Mol Biol; 2009 Oct; 392(5):1292-302. PubMed ID: 19683002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of Medicago truncatula UGT85H2--insights into the structural basis of a multifunctional (iso)flavonoid glycosyltransferase.
    Li L; Modolo LV; Escamilla-Trevino LL; Achnine L; Dixon RA; Wang X
    J Mol Biol; 2007 Jul; 370(5):951-63. PubMed ID: 17553523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single amino acid mutations of Medicago glycosyltransferase UGT85H2 enhance activity and impart reversibility.
    Modolo LV; Escamilla-Treviño LL; Dixon RA; Wang X
    FEBS Lett; 2009 Jun; 583(12):2131-5. PubMed ID: 19500551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula.
    Shao H; He X; Achnine L; Blount JW; Dixon RA; Wang X
    Plant Cell; 2005 Nov; 17(11):3141-54. PubMed ID: 16214900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutational analysis of the Medicago glycosyltransferase UGT71G1 reveals residues that control regioselectivity for (iso)flavonoid glycosylation.
    He XZ; Wang X; Dixon RA
    J Biol Chem; 2006 Nov; 281(45):34441-7. PubMed ID: 16982612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural evidence of a passive base-flipping mechanism for AGT, an unusual GT-B glycosyltransferase.
    Larivière L; Sommer N; Moréra S
    J Mol Biol; 2005 Sep; 352(1):139-50. PubMed ID: 16081100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycosylation of flavonoids with a glycosyltransferase from Bacillus cereus.
    Hyung Ko J; Gyu Kim B; Joong-Hoon A
    FEMS Microbiol Lett; 2006 May; 258(2):263-8. PubMed ID: 16640583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure, mechanism and engineering of a nucleotidylyltransferase as a first step toward glycorandomization.
    Barton WA; Lesniak J; Biggins JB; Jeffrey PD; Jiang J; Rajashankar KR; Thorson JS; Nikolov DB
    Nat Struct Biol; 2001 Jun; 8(6):545-51. PubMed ID: 11373625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and action of the C-C bond-forming glycosyltransferase UrdGT2 involved in the biosynthesis of the antibiotic urdamycin.
    Mittler M; Bechthold A; Schulz GE
    J Mol Biol; 2007 Sep; 372(1):67-76. PubMed ID: 17640665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs.
    Persson K; Ly HD; Dieckelmann M; Wakarchuk WW; Withers SG; Strynadka NC
    Nat Struct Biol; 2001 Feb; 8(2):166-75. PubMed ID: 11175908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional structures of the Mn and Mg dTDP complexes of the family GT-2 glycosyltransferase SpsA: a comparison with related NDP-sugar glycosyltransferases.
    Tarbouriech N; Charnock SJ; Davies GJ
    J Mol Biol; 2001 Dec; 314(4):655-61. PubMed ID: 11733986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanding the promiscuity of a natural-product glycosyltransferase by directed evolution.
    Williams GJ; Zhang C; Thorson JS
    Nat Chem Biol; 2007 Oct; 3(10):657-62. PubMed ID: 17828251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional and structural characterization of a flavonoid glucoside 1,6-glucosyltransferase from Catharanthus roseus.
    Masada S; Terasaka K; Oguchi Y; Okazaki S; Mizushima T; Mizukami H
    Plant Cell Physiol; 2009 Aug; 50(8):1401-15. PubMed ID: 19561332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Characterization and Structural Basis of an Efficient Di-
    Zhang M; Li FD; Li K; Wang ZL; Wang YX; He JB; Su HF; Zhang ZY; Chi CB; Shi XM; Yun CH; Zhang ZY; Liu ZM; Zhang LR; Yang DH; Ma M; Qiao X; Ye M
    J Am Chem Soc; 2020 Feb; 142(7):3506-3512. PubMed ID: 31986016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti.
    Zhang J; Subramanian S; Stacey G; Yu O
    Plant J; 2009 Jan; 57(1):171-83. PubMed ID: 18786000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three important amino acids control the regioselectivity of flavonoid glucosidation in glycosyltransferase-1 from Bacillus cereus.
    Chiu HH; Hsieh YC; Chen YH; Wang HY; Lu CY; Chen CJ; Li YK
    Appl Microbiol Biotechnol; 2016 Oct; 100(19):8411-24. PubMed ID: 27198725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural insights into the Notch-modifying glycosyltransferase Fringe.
    Jinek M; Chen YW; Clausen H; Cohen SM; Conti E
    Nat Struct Mol Biol; 2006 Oct; 13(10):945-6. PubMed ID: 16964258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chimeric glycosyltransferases for the generation of hybrid glycopeptides.
    Truman AW; Dias MV; Wu S; Blundell TL; Huang F; Spencer JB
    Chem Biol; 2009 Jun; 16(6):676-85. PubMed ID: 19549605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of the glycosyltransferase SnogD from the biosynthetic pathway of nogalamycin in Streptomyces nogalater.
    Claesson M; Siitonen V; Dobritzsch D; Metsä-Ketelä M; Schneider G
    FEBS J; 2012 Sep; 279(17):3251-63. PubMed ID: 22804797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms.
    Charnock SJ; Davies GJ
    Biochemistry; 1999 May; 38(20):6380-5. PubMed ID: 10350455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.