These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
572 related articles for article (PubMed ID: 19683244)
1. Application of retention modelling to the simulation of separation of organic anions in suppressed ion chromatography. Zakaria P; Dicinoski GW; Ng BK; Shellie RA; Hanna-Brown M; Haddad PR J Chromatogr A; 2009 Sep; 1216(38):6600-10. PubMed ID: 19683244 [TBL] [Abstract][Full Text] [Related]
2. Prediction of the effects of methanol and competing ion concentration on retention in the ion chromatographic separation of anionic and cationic pharmaceutically related compounds. Zakaria P; Dicinoski G; Hanna-Brown M; Haddad PR J Chromatogr A; 2010 Sep; 1217(39):6069-76. PubMed ID: 20732686 [TBL] [Abstract][Full Text] [Related]
3. Single-run ion chromatographic separation of inorganic and low-molecular-mass organic anions under isocratic elution: application to environmental samples. Krata A; Kontozova-Deutsch V; Bencs L; Deutsch F; Van Grieken R Talanta; 2009 Jun; 79(1):16-21. PubMed ID: 19376337 [TBL] [Abstract][Full Text] [Related]
4. Retention profiles and mechanism of anion separation on latex-based pellicular ion exchanger in ion chromatography. Horváth K; Hajós P J Chromatogr A; 2006 Feb; 1104(1-2):75-81. PubMed ID: 16337639 [TBL] [Abstract][Full Text] [Related]
5. Determination of pharmaceutically related compounds by suppressed ion chromatography: I. Effects of organic solvent on suppressor performance. Karu N; Dicinoski GW; Hanna-Brown M; Haddad PR J Chromatogr A; 2011 Dec; 1218(50):9037-45. PubMed ID: 22056240 [TBL] [Abstract][Full Text] [Related]
6. Methodology for porting retention prediction data from old to new columns and from conventional-scale to miniaturised ion chromatography systems. Ng BK; Shellie RA; Dicinoski GW; Bloomfield C; Liu Y; Pohl CA; Haddad PR J Chromatogr A; 2011 Aug; 1218(32):5512-9. PubMed ID: 21741652 [TBL] [Abstract][Full Text] [Related]
7. Poly(ethylene oxide)-bonded stationary phase for separation of inorganic anions in capillary ion chromatography. Linda R; Lim LW; Takeuchi T J Chromatogr A; 2013 Jun; 1294():117-21. PubMed ID: 23659983 [TBL] [Abstract][Full Text] [Related]
8. Utilization of a diol-stationary phase column in ion chromatographic separation of inorganic anions. Arai K; Mori M; Kozaki D; Nakatani N; Itabashi H; Tanaka K J Chromatogr A; 2012 Dec; 1270():147-52. PubMed ID: 23182277 [TBL] [Abstract][Full Text] [Related]
9. Fast ion chromatography using short anion exchange columns. Tyrrell E; Shellie RA; Hilder EF; Pohl CA; Haddad PR J Chromatogr A; 2009 Nov; 1216(48):8512-7. PubMed ID: 19846103 [TBL] [Abstract][Full Text] [Related]
10. Two-dimensional ion chromatography using tandem ion-exchange columns with gradient-pulse column switching. Johns C; Shellie RA; Pohl CA; Haddad PR J Chromatogr A; 2009 Oct; 1216(41):6931-7. PubMed ID: 19732899 [TBL] [Abstract][Full Text] [Related]
11. Prediction of analyte retention for ion chromatography separations performed using elution profiles comprising multiple isocratic and gradient steps. Shellie RA; Ng BK; Dicinoski GW; Poynter SD; O'Reilly JW; Pohl CA; Haddad PR Anal Chem; 2008 Apr; 80(7):2474-82. PubMed ID: 18327920 [TBL] [Abstract][Full Text] [Related]
12. Retention controlling and peak shape simulation in anion chromatography using multiple equilibrium model and stochastic theory. Horváth K; Olajos M; Felinger A; Hajós P J Chromatogr A; 2008 May; 1189(1-2):42-51. PubMed ID: 17719052 [TBL] [Abstract][Full Text] [Related]
13. Double gradient ion chromatography using short monolithic columns modified with a long chained zwitterionic carboxybetaine surfactant. Ríordáin CO; Barron L; Nesterenko E; Nesterenko PN; Paull B J Chromatogr A; 2006 Mar; 1109(1):111-9. PubMed ID: 16426628 [TBL] [Abstract][Full Text] [Related]
14. Separation of inorganic anions on a triazole-functionalized ion exchanger in ion chromatography. Zhang F; Liu Y; Wei J; Guo Z; Yang B; Liang X J Sep Sci; 2011 Apr; 34(7):796-9. PubMed ID: 21374812 [TBL] [Abstract][Full Text] [Related]
15. Determination of common inorganic anions and cations by non-suppressed ion chromatography with column switching. Amin M; Lim LW; Takeuchi T J Chromatogr A; 2008 Feb; 1182(2):169-75. PubMed ID: 18221746 [TBL] [Abstract][Full Text] [Related]
16. Hard modeling of ion chromatography separations on hydroxide-selective stationary phase. Drgan V; Novic M; Pihlar B; Novic M J Chromatogr A; 2008 Mar; 1185(1):109-16. PubMed ID: 18289555 [TBL] [Abstract][Full Text] [Related]
17. Arsenic speciation by gradient anion exchange narrow bore ion chromatography and high resolution inductively coupled plasma mass spectrometry detection. Ammann AA J Chromatogr A; 2010 Apr; 1217(14):2111-6. PubMed ID: 20188376 [TBL] [Abstract][Full Text] [Related]
18. Influence of acidic eluent for retention behaviors of common anions and cations by ion-exclusion/cation-exchange chromatography on a weakly acidic cation-exchange resin in the H+ -form. Mori M; Tanaka K; Satori T; Ikedo M; Hu W; Itabashi H J Chromatogr A; 2006 Jun; 1118(1):51-5. PubMed ID: 16546200 [TBL] [Abstract][Full Text] [Related]
19. Equilibrium-based approach for prediction of matrix-related interferences in anion chromatography. Hajós P; Horváth K J Chromatogr A; 2008 Jul; 1198-1199():101-6. PubMed ID: 18550073 [TBL] [Abstract][Full Text] [Related]
20. Characterization of ion chromatography columns based on hydrophobicity and hydroxide eluent strength. Liang C; Lucy CA J Chromatogr A; 2010 Dec; 1217(52):8154-60. PubMed ID: 21106199 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]