These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 19683550)

  • 1. Development of a high-throughput method to evaluate the impact of inhibitory compounds from lignocellulosic hydrolysates on the growth of Zymomonas mobilis.
    Franden MA; Pienkos PT; Zhang M
    J Biotechnol; 2009 Dec; 144(4):259-67. PubMed ID: 19683550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome profiling of Zymomonas mobilis under furfural stress.
    He MX; Wu B; Shui ZX; Hu QC; Wang WG; Tan FR; Tang XY; Zhu QL; Pan K; Li Q; Su XH
    Appl Microbiol Biotechnol; 2012 Jul; 95(1):189-99. PubMed ID: 22592554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition analysis of inhibitors derived from lignocellulose pretreatment on the metabolic activity of Zymomonas mobilis biofilm and planktonic cells and the proteomic responses.
    Todhanakasem T; Yodsanga S; Sowatad A; Kanokratana P; Thanonkeo P; Champreda V
    Biotechnol Bioeng; 2018 Jan; 115(1):70-81. PubMed ID: 28892134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review.
    Parawira W; Tekere M
    Crit Rev Biotechnol; 2011 Mar; 31(1):20-31. PubMed ID: 20513164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioabatement to remove inhibitors from biomass-derived sugar hydrolysates.
    Nichols NN; Dien BS; Guisado GM; López MJ
    Appl Biochem Biotechnol; 2005; 121-124():379-90. PubMed ID: 15917615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of a newly developed integrant of Zymomonas mobilis for ethanol production on corn stover hydrolysate.
    Mohagheghi A; Dowe N; Schell D; Chou YC; Eddy C; Zhang M
    Biotechnol Lett; 2004 Feb; 26(4):321-5. PubMed ID: 15055769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of hfq and sigE on the tolerance of Zymomonas mobilis ZM4 to furfural and acetic acid stresses.
    Nouri H; Moghimi H; Marashi SA; Elahi E
    PLoS One; 2020; 15(10):e0240330. PubMed ID: 33035245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flocculating Zymomonas mobilis is a promising host to be engineered for fuel ethanol production from lignocellulosic biomass.
    Zhao N; Bai Y; Liu CG; Zhao XQ; Xu JF; Bai FW
    Biotechnol J; 2014 Mar; 9(3):362-71. PubMed ID: 24357469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pre-treatment step with Leuconostoc mesenteroides or L. pseudomesenteroides strains removes furfural from Zymomonas mobilis ethanolic fermentation broth.
    Hunter WJ; Manter DK
    Bioresour Technol; 2014 Oct; 169():162-168. PubMed ID: 25048957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates.
    López MJ; Nichols NN; Dien BS; Moreno J; Bothast RJ
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):125-31. PubMed ID: 12908085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and evaluation of lignocellulosic biomass hydrolysates for growth by ethanologenic yeasts.
    Zha Y; Slomp R; van Groenestijn J; Punt PJ
    Methods Mol Biol; 2012; 834():245-59. PubMed ID: 22144364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of recycling stillage on conversion of dilute sulfuric acid pretreated corn stover to ethanol.
    Mohagheghi A; Schell DJ
    Biotechnol Bioeng; 2010 Apr; 105(5):992-6. PubMed ID: 19998277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of bark on the fermentation of Douglas-fir whitewood pre-hydrolysates.
    Robinson J; Keating JD; Boussaid A; Mansfield SD; Saddler JN
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):443-8. PubMed ID: 12172607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors.
    Liu ZL
    Appl Microbiol Biotechnol; 2006 Nov; 73(1):27-36. PubMed ID: 17028874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High tolerance and physiological mechanism of Zymomonas mobilis to phenolic inhibitors in ethanol fermentation of corncob residue.
    Gu H; Zhang J; Bao J
    Biotechnol Bioeng; 2015 Sep; 112(9):1770-82. PubMed ID: 25851269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of glucose/xylose cofermentation of poplar hydrolysates processed by different pretreatment technologies.
    Lu Y; Warner R; Sedlak M; Ho N; Mosier NS
    Biotechnol Prog; 2009; 25(2):349-56. PubMed ID: 19319980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alcoholic fermentation of Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis in the presence of inhibitory compounds and seawater.
    Gonçalves FA; dos Santos ES; de Macedo GR
    J Basic Microbiol; 2015 Jun; 55(6):695-708. PubMed ID: 25760943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of varying feedstock-pretreatment chemistry combinations on the formation and accumulation of potentially inhibitory degradation products in biomass hydrolysates.
    Du B; Sharma LN; Becker C; Chen SF; Mowery RA; van Walsum GP; Chambliss CK
    Biotechnol Bioeng; 2010 Oct; 107(3):430-40. PubMed ID: 20552667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and validation of a fast high pressure liquid chromatography method for the analysis of lignocellulosic biomass hydrolysis and fermentation products.
    Scarlata CJ; Hyman DA
    J Chromatogr A; 2010 Apr; 1217(14):2082-7. PubMed ID: 20202640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accounting for all sugars produced during integrated production of ethanol from lignocellulosic biomass.
    Schell DJ; Dowe N; Chapeaux A; Nelson RS; Jennings EW
    Bioresour Technol; 2016 Apr; 205():153-8. PubMed ID: 26826954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.