These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 19683551)

  • 1. Construction and characterization of centromeric, episomal and GFP-containing vectors for Saccharomyces cerevisiae prototrophic strains.
    Baruffini E; Serafini F; Lodi T
    J Biotechnol; 2009 Sep; 143(4):247-54. PubMed ID: 19683551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae.
    Taxis C; Knop M
    Biotechniques; 2006 Jan; 40(1):73-8. PubMed ID: 16454043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of mutated PDR3 gene as a dominant selectable marker in transformation of prototrophic yeast strains.
    Lacková D; Subík J
    Folia Microbiol (Praha); 1999; 44(2):171-6. PubMed ID: 10588052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of Saccharomyces cerevisiae expression plasmids.
    Drew D; Kim H
    Methods Mol Biol; 2012; 866():41-6. PubMed ID: 22454112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dominant marker vectors for selecting yeast mating products.
    Sadowski I; Lourenco P; Parent J
    Yeast; 2008 Aug; 25(8):595-9. PubMed ID: 18613257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A shuttle vector series for precise genetic engineering of Saccharomyces cerevisiae.
    Gnügge R; Liphardt T; Rudolf F
    Yeast; 2016 Mar; 33(3):83-98. PubMed ID: 26647923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of two alternative dominant selectable markers for wine yeast transformation.
    Cebollero E; Gonzalez R
    Appl Environ Microbiol; 2004 Dec; 70(12):7018-23. PubMed ID: 15574895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new series of yeast shuttle vectors for the recovery and identification of multiple plasmids from Saccharomyces cerevisiae.
    Frazer LN; O'Keefe RT
    Yeast; 2007 Sep; 24(9):777-89. PubMed ID: 17597491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trifluoroleucine resistance as a dominant molecular marker in transformation of strains of Saccharomyces cerevisiae isolated from wine.
    Bendoni B; Cavalieri D; Casalone E; Polsinelli M; Barberio C
    FEMS Microbiol Lett; 1999 Nov; 180(2):229-33. PubMed ID: 10556716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2-micron vectors containing the Saccharomyces cerevisiae metallothionein gene as a selectable marker: excellent stability in complex media, and high-level expression of a recombinant protein from a CUP1-promoter-controlled expression cassette in cis.
    Hottiger T; Kuhla J; Pohlig G; Fürst P; Spielmann A; Garn M; Haemmerli S; Heim J
    Yeast; 1995 Jan; 11(1):1-14. PubMed ID: 7762296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A set of isomeric episomal plasmids for systematic examination of mitotic stability in Saccharomyces cerevisiae.
    Hohnholz R; Pohlmann KJ; Achstetter T
    Yeast; 2017 Jun; 34(6):267-275. PubMed ID: 28207166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic characterization and construction of an auxotrophic strain of Saccharomyces cerevisiae JP1, a Brazilian industrial yeast strain for bioethanol production.
    Reis VC; Nicola AM; de Souza Oliveira Neto O; Batista VD; de Moraes LM; Torres FA
    J Ind Microbiol Biotechnol; 2012 Nov; 39(11):1673-83. PubMed ID: 22892884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual gene expression cassette vectors with antibiotic selection markers for engineering in Saccharomyces cerevisiae.
    Vickers CE; Bydder SF; Zhou Y; Nielsen LK
    Microb Cell Fact; 2013 Oct; 12():96. PubMed ID: 24161108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of plasmid architecture on stability and yEGFP3 reporter gene expression in a set of isomeric multicopy vectors in yeast.
    Hohnholz R; Pohlmann KJ; Achstetter T
    Appl Microbiol Biotechnol; 2017 Dec; 101(23-24):8455-8463. PubMed ID: 29052760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifunctional yeast high-copy-number shuttle vectors.
    Christianson TW; Sikorski RS; Dante M; Shero JH; Hieter P
    Gene; 1992 Jan; 110(1):119-22. PubMed ID: 1544568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saccharomyces cerevisiae Shuttle vectors.
    Gnügge R; Rudolf F
    Yeast; 2017 May; 34(5):205-221. PubMed ID: 28072905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a set of plasmid vectors for genetic manipulations of the pathogenic yeast Candida parapsilosis.
    Kosa P; Gavenciakova B; Nosek J
    Gene; 2007 Jul; 396(2):338-45. PubMed ID: 17512139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel yeast genomic DNA library on a geneticin-resistance vector.
    Jauert PA; Jensen LE; Kirkpatrick DT
    Yeast; 2005 Jun; 22(8):653-7. PubMed ID: 16034826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of two new vectors for transformation of laboratory, natural and industrial Saccharomyces cerevisiae strains to trifluoroleucine and G418 resistance.
    Bardazzi I; Casalone E
    Folia Microbiol (Praha); 2004; 49(5):534-8. PubMed ID: 15702541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hygromycin-resistance vectors for gene expression in Pichia pastoris.
    Yang J; Nie L; Chen B; Liu Y; Kong Y; Wang H; Diao L
    Yeast; 2014 Apr; 31(4):115-25. PubMed ID: 24822243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.