These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 19683578)
21. Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum. Weaver JC; Aizenberg J; Fantner GE; Kisailus D; Woesz A; Allen P; Fields K; Porter MJ; Zok FW; Hansma PK; Fratzl P; Morse DE J Struct Biol; 2007 Apr; 158(1):93-106. PubMed ID: 17175169 [TBL] [Abstract][Full Text] [Related]
22. Hierarchical composition of the axial filament from spicules of the siliceous sponge Suberites domuncula: from biosilica-synthesizing nanofibrils to structure- and morphology-guiding triangular stems. Müller WE; Mugnaioli E; Schröder HC; Schloßmacher U; Giovine M; Kolb U; Wang X Cell Tissue Res; 2013 Jan; 351(1):49-58. PubMed ID: 23135475 [TBL] [Abstract][Full Text] [Related]
23. Apposition of silica lamellae during growth of spicules in the demosponge Suberites domuncula: biological/biochemical studies and chemical/biomimetical confirmation. Schröder HC; Natalio F; Shukoor I; Tremel W; Schlossmacher U; Wang X; Müller WE J Struct Biol; 2007 Sep; 159(3):325-34. PubMed ID: 17336092 [TBL] [Abstract][Full Text] [Related]
24. Isolation of the silicatein-α interactor silintaphin-2 by a novel solid-phase pull-down assay. Wiens M; Schröder HC; Wang X; Link T; Steindorf D; Müller WE Biochemistry; 2011 Mar; 50(12):1981-90. PubMed ID: 21319729 [TBL] [Abstract][Full Text] [Related]
25. Biochemistry and cell biology of silica formation in sponges. Müller WE; Krasko A; Le Pennec G; Schröder HC Microsc Res Tech; 2003 Nov; 62(4):368-77. PubMed ID: 14534909 [TBL] [Abstract][Full Text] [Related]
26. Intra-epithelial spicules in a homosclerophorid sponge. Maldonado M; Riesgo A Cell Tissue Res; 2007 Jun; 328(3):639-50. PubMed ID: 17340151 [TBL] [Abstract][Full Text] [Related]
27. Silicateins, silicatein interactors and cellular interplay in sponge skeletogenesis: formation of glass fiber-like spicules. Wang X; Schloßmacher U; Wiens M; Batel R; Schröder HC; Müller WE FEBS J; 2012 May; 279(10):1721-36. PubMed ID: 22340505 [TBL] [Abstract][Full Text] [Related]
28. Long-chain polyamines (LCPAs) from marine sponge: possible implication in spicule formation. Matsunaga S; Sakai R; Jimbo M; Kamiya H Chembiochem; 2007 Sep; 8(14):1729-35. PubMed ID: 17683052 [TBL] [Abstract][Full Text] [Related]
29. Hardening of bio-silica in sponge spicules involves an aging process after its enzymatic polycondensation: evidence for an aquaporin-mediated water absorption. Müller WE; Wang X; Wiens M; Schlossmacher U; Jochum KP; Schröder HC Biochim Biophys Acta; 2011 Jul; 1810(7):713-26. PubMed ID: 21565255 [TBL] [Abstract][Full Text] [Related]
30. Novel photoreception system in sponges? Unique transmission properties of the stalk spicules from the hexactinellid Hyalonemasieboldi. Müller WE; Wendt K; Geppert C; Wiens M; Reiber A; Schröder HC Biosens Bioelectron; 2006 Jan; 21(7):1149-55. PubMed ID: 15935634 [TBL] [Abstract][Full Text] [Related]
31. Structure and composition of calcareous sponge spicules: a review and comparison to structurally related biominerals. Sethmann I; Wörheide G Micron; 2008; 39(3):209-28. PubMed ID: 17360189 [TBL] [Abstract][Full Text] [Related]
32. Dynamics of spicule production in the marine sponge Hymeniacidon perlevis during in vitro cell culture and seasonal development in the field. Cao X; Fu W; Yu X; Zhang W Cell Tissue Res; 2007 Sep; 329(3):595-608. PubMed ID: 17593397 [TBL] [Abstract][Full Text] [Related]
33. Crystalline nanorods as possible templates for the synthesis of amorphous biosilica during spicule formation in Demospongiae. Mugnaioli E; Natalio F; Schlossmacher U; Wang X; Müller WE; Kolb U Chembiochem; 2009 Mar; 10(4):683-9. PubMed ID: 19184987 [TBL] [Abstract][Full Text] [Related]
34. Sponge spicules as blueprints for the biofabrication of inorganic-organic composites and biomaterials. Müller WE; Wang X; Cui FZ; Jochum KP; Tremel W; Bill J; Schröder HC; Natalio F; Schlossmacher U; Wiens M Appl Microbiol Biotechnol; 2009 Jun; 83(3):397-413. PubMed ID: 19430775 [TBL] [Abstract][Full Text] [Related]
35. Formation of siliceous spicules in the marine demosponge Suberites domuncula. Müller WE; Rothenberger M; Boreiko A; Tremel W; Reiber A; Schröder HC Cell Tissue Res; 2005 Aug; 321(2):285-97. PubMed ID: 15947968 [TBL] [Abstract][Full Text] [Related]
36. Structural characterization of siliceous spicules from marine sponges. Croce G; Frache A; Milanesio M; Marchese L; Causà M; Viterbo D; Barbaglia A; Bolis V; Bavestrello G; Cerrano C; Benatti U; Pozzolini M; Giovine M; Amenitsch H Biophys J; 2004 Jan; 86(1 Pt 1):526-34. PubMed ID: 14695297 [TBL] [Abstract][Full Text] [Related]
37. First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera). Ehrlich H; Krautter M; Hanke T; Simon P; Knieb C; Heinemann S; Worch H J Exp Zool B Mol Dev Evol; 2007 Jul; 308(4):473-83. PubMed ID: 17520693 [TBL] [Abstract][Full Text] [Related]
38. Toward understanding the morphogenesis of siliceous spicules in freshwater sponge: differential mRNA expression of spicule-type-specific silicatein genes in Ephydatia fluviatilis. Mohri K; Nakatsukasa M; Masuda Y; Agata K; Funayama N Dev Dyn; 2008 Oct; 237(10):3024-39. PubMed ID: 18816843 [TBL] [Abstract][Full Text] [Related]
39. Silintaphin-1--interaction with silicatein during structure-guiding bio-silica formation. Schlossmacher U; Wiens M; Schröder HC; Wang X; Jochum KP; Müller WE FEBS J; 2011 Apr; 278(7):1145-55. PubMed ID: 21284806 [TBL] [Abstract][Full Text] [Related]
40. Sustainable Exploitation and Conservation of the Endemic Lake Baikal Sponge (Lubomirskia baicalensis) for Application in Nanobiotechnology. Müller WE; Schröder HC; Belikov SI Prog Mol Subcell Biol; 2009; 47():383-416. PubMed ID: 19198787 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]