BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 19683784)

  • 21. Experimental study on the optimisation of azo-dyes removal by photo-electrochemical oxidation with TiO
    Mais L; Vacca A; Mascia M; Usai EM; Tronci S; Palmas S
    Chemosphere; 2020 Jun; 248():125938. PubMed ID: 31995733
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrochemical degradation applied to the metabolites of Acid Orange 7 anaerobic biotreatment.
    Carvalho C; Fernandes A; Lopes A; Pinheiro H; Gonçalves I
    Chemosphere; 2007 Apr; 67(7):1316-24. PubMed ID: 17169400
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrochemical Oxidation of EDTA in Nuclear Wastewater Using Platinum Supported on Activated Carbon Fibers.
    Zhao B; Zhu W; Mu T; Hu Z; Duan T
    Int J Environ Res Public Health; 2017 Jul; 14(7):. PubMed ID: 28754016
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mineralization of sulfanilamide by electro-Fenton and solar photoelectro-Fenton in a pre-pilot plant with a Pt/air-diffusion cell.
    El-Ghenymy A; Cabot PL; Centellas F; Garrido JA; Rodríguez RM; Arias C; Brillas E
    Chemosphere; 2013 May; 91(9):1324-31. PubMed ID: 23561569
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In-situ formation and immobilization of biogenic nanopalladium into anaerobic granular sludge enhances azo dyes degradation.
    Quan X; Zhang X; Xu H
    Water Res; 2015 Jul; 78():74-83. PubMed ID: 25912251
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Degradation process analysis of the azo dyes by catalytic wet air oxidation with catalyst CuO/γ-Al2O3.
    Hua L; Ma H; Zhang L
    Chemosphere; 2013 Jan; 90(2):143-9. PubMed ID: 22795071
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochemical oxidation of methyl orange by a Magnéli phase Ti
    Wang G; Liu Y; Ye J; Lin Z; Yang X
    Chemosphere; 2020 Feb; 241():125084. PubMed ID: 31627111
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrochemical degradation of PNP at boron-doped diamond and platinum electrodes.
    Zhang Y; Yang N; Murugananthan M; Yoshihara S
    J Hazard Mater; 2013 Jan; 244-245():295-302. PubMed ID: 23270953
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of electrochemical reduction and oxidation processes on the decolourisation and degradation of C.I. Reactive Orange 4 solutions.
    del Río AI; Molina J; Bonastre J; Cases F
    Chemosphere; 2009 Jun; 75(10):1329-37. PubMed ID: 19345978
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrocatalytic characterization and dye degradation of nano-TiO2 electrode films fabricated by CVD.
    Chang JH; Ellis AV; Hsieh YH; Tung CH; Shen SY
    Sci Total Environ; 2009 Nov; 407(22):5914-20. PubMed ID: 19712960
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of an activated carbon-packed microbial bioelectrochemical system for azo dye degradation.
    Cardenas-Robles A; Martinez E; Rendon-Alcantar I; Frontana C; Gonzalez-Gutierrez L
    Bioresour Technol; 2013 Jan; 127():37-43. PubMed ID: 23128299
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel advanced oxidation process to degrade organic pollutants in wastewater: microwave-activated persulfate oxidation.
    Yang S; Wang P; Yang X; Wei G; Zhang W; Shan L
    J Environ Sci (China); 2009; 21(9):1175-80. PubMed ID: 19999962
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrochemical or UV-photochemical oxidation of industrial wastes containing polar aromatic sulphonates.
    Zerbinati O; Pittavino S
    Environ Sci Pollut Res Int; 2003; 10(6):395-8. PubMed ID: 14690029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrochemical incineration of sulfanilic acid at a boron-doped diamond anode.
    El-Ghenymy A; Arias C; Cabot PL; Centellas F; Garrido JA; Rodríguez RM; Brillas E
    Chemosphere; 2012 Jun; 87(10):1126-33. PubMed ID: 22365277
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strategies comparison of eliminating the passivation of non-aromatic intermediates in degradation of Orange II by Fe3+/H2O2.
    Chen F; Li Y; Guo L; Zhang J
    J Hazard Mater; 2009 Sep; 169(1-3):711-8. PubMed ID: 19414214
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photocatalytic degradation of wastewater pollutants: titanium dioxide mediated degradation of methyl orange and beta-naphthol orange.
    Antharjanam S; Philip R; Suresh D
    Ann Chim; 2003; 93(9-10):719-28. PubMed ID: 14672362
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simultaneous removal of color, organic compounds and nutrients in azo dye-containing wastewater using up-flow constructed wetland.
    Ong SA; Uchiyama K; Inadama D; Yamagiwa K
    J Hazard Mater; 2009 Jun; 165(1-3):696-703. PubMed ID: 19081183
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multivariate optimization for electrochemical oxidation of methyl orange: Pathway identification and toxicity analysis.
    Pillai IM; Gupta AK; Tiwari MK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(3):301-10. PubMed ID: 25594123
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Degradation of cationic red X-GRL by electrochemical oxidation on modified PbO(2) electrode.
    Zhou M; He J
    J Hazard Mater; 2008 May; 153(1-2):357-63. PubMed ID: 17904735
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anodic oxidation of 1,4-dioxane on boron-doped diamond electrodes for wastewater treatment.
    Choi JY; Lee YJ; Shin J; Yang JW
    J Hazard Mater; 2010 Jul; 179(1-3):762-8. PubMed ID: 20381243
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.