BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 19683786)

  • 1. Metallothionein response in earthworms Lampito mauritii (Kinberg) exposed to fly ash.
    Maity S; Bhattacharya S; Chaudhury S
    Chemosphere; 2009 Oct; 77(3):319-24. PubMed ID: 19683786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vermicomposting of Tea Factory Coal Ash: metal accumulation and metallothionein response in Eisenia fetida (Savigny) and Lampito mauritii (Kinberg).
    Goswami L; Sarkar S; Mukherjee S; Das S; Barman S; Raul P; Bhattacharyya P; Mandal NC; Bhattacharya S; Bhattacharya SS
    Bioresour Technol; 2014 Aug; 166():96-102. PubMed ID: 24907568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of earthworm Lampito mauritii (Kinberg) in amending lead and zinc treated soil.
    Maity S; Padhy PK; Chaudhury S
    Bioresour Technol; 2008 Oct; 99(15):7291-8. PubMed ID: 18331791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomics study revealed altered proteome of Dichogaster curgensis upon exposure to fly ash.
    Markad VL; Adav SS; Ghole VS; Sze SK; Kodam KM
    Chemosphere; 2016 Oct; 160():104-13. PubMed ID: 27371791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antioxidant responses of the earthworm Lampito mauritii exposed to Pb and Zn contaminated soil.
    Maity S; Roy S; Chaudhury S; Bhattacharya S
    Environ Pollut; 2008 Jan; 151(1):1-7. PubMed ID: 17512104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomarker responses in the earthworm, Dichogaster curgensis exposed to fly ash polluted soils.
    Markad VL; Gaupale TC; Bhargava S; Kodam KM; Ghole VS
    Ecotoxicol Environ Saf; 2015 Aug; 118():62-70. PubMed ID: 25910689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metallothionein dependent-detoxification of heavy metals in the agricultural field soil of industrial area: Earthworm as field experimental model system.
    Yuvaraj A; Govarthanan M; Karmegam N; Biruntha M; Kumar DS; Arthanari M; Govindarajan RK; Tripathi S; Ghosh S; Kumar P; Kannan S; Thangaraj R
    Chemosphere; 2021 Mar; 267():129240. PubMed ID: 33341732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth performance and biochemical responses of three rice (Oryza sativa L.) cultivars grown in fly-ash amended soil.
    Dwivedi S; Tripathi RD; Srivastava S; Mishra S; Shukla MK; Tiwari KK; Singh R; Rai UN
    Chemosphere; 2007 Feb; 67(1):140-51. PubMed ID: 17166555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of the earthworm Lampito mauritii (Kinberg) on the activity of selected soil enzymes in cadmium-amended soil.
    Sivakumar S; Prabha D; Barathi S; Nityanandi D; Subbhuraam CV; Lakshmipriya T; Kamala-Kannan S; Jang SH; Yi PI
    Environ Monit Assess; 2015 Mar; 187(3):74. PubMed ID: 25647789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical speciation and phytoavailability of Zn, Cu, Ni and Cd in soil amended with fly ash-stabilized sewage sludge.
    Su DC; Wong JW
    Environ Int; 2004 Jan; 29(7):895-900. PubMed ID: 14592566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study on elemental composition and DNA damage in leaves of a weedy plant species, Cassia occidentalis, growing wild on weathered fly ash and soil.
    Love A; Tandon R; Banerjee BD; Babu CR
    Ecotoxicology; 2009 Oct; 18(7):791-801. PubMed ID: 19484382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: effect on antioxidants.
    Sinha S; Gupta AK
    Chemosphere; 2005 Dec; 61(8):1204-14. PubMed ID: 16226293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of boron accumulation by fly ash application in paddy soil.
    Lee SB; Lee YB; Lee CH; Hong CO; Kim PJ; Yu C
    Bioresour Technol; 2008 Sep; 99(13):5928-32. PubMed ID: 18194862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dose-related effect of fly ash on edaphic properties in laterite cropland soil.
    Roy G; Joy VC
    Ecotoxicol Environ Saf; 2011 May; 74(4):769-75. PubMed ID: 21106242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationships between metal compartmentalization and biomarkers in earthworms exposed to field-contaminated soils.
    Beaumelle L; Hedde M; Vandenbulcke F; Lamy I
    Environ Pollut; 2017 May; 224():185-194. PubMed ID: 28284548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformation of nitrogen during vermicomposting of fly ash.
    Bhattacharya SS; Chattopadhyay GN
    Waste Manag Res; 2004 Dec; 22(6):488-91. PubMed ID: 15666451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of fly ash on biochemical responses and DNA damage in earthworm, Dichogaster curgensis.
    Markad VL; Kodam KM; Ghole VS
    J Hazard Mater; 2012 May; 215-216():191-8. PubMed ID: 22410726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of 2'-deoxyguanosine hydroxylation and DNA damage by coal and oil fly ash in relation to particulate metal content and availability.
    Prahalad AK; Inmon J; Ghio AJ; Gallagher JE
    Chem Res Toxicol; 2000 Oct; 13(10):1011-9. PubMed ID: 11080050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial Part 2. Influence on plants.
    Pourrut B; Lopareva-Pohu A; Pruvot C; Garçon G; Verdin A; Waterlot C; Bidar G; Shirali P; Douay F
    Sci Total Environ; 2011 Oct; 409(21):4504-10. PubMed ID: 21871650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative studies on biomass production, life cycles and composting efficiency of Eisenia fetida (Savigny) and Lampito mauritii (Kinberg).
    Tripathi G; Bhardwaj P
    Bioresour Technol; 2004 May; 92(3):275-83. PubMed ID: 14766161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.