These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 19683847)
1. Factors affecting the concentration in seven-spotted ladybirds (Coccinella septempunctata L.) of Cd and Zn transferred through the food chain. Green ID; Diaz A; Tibbett M Environ Pollut; 2010 Jan; 158(1):135-41. PubMed ID: 19683847 [TBL] [Abstract][Full Text] [Related]
2. The transfer and fate of Pb from sewage sludge amended soil in a multi-trophic food chain: a comparison with the labile elements Cd and Zn. Dar MI; Khan FA; Green ID; Naikoo MI Environ Sci Pollut Res Int; 2015 Oct; 22(20):16133-42. PubMed ID: 26070738 [TBL] [Abstract][Full Text] [Related]
3. Assessment of biotransfer and bioaccumulation of cadmium, lead and zinc from fly ash amended soil in mustard-aphid-beetle food chain. Dar MI; Green ID; Naikoo MI; Khan FA; Ansari AA; Lone MI Sci Total Environ; 2017 Apr; 584-585():1221-1229. PubMed ID: 28153402 [TBL] [Abstract][Full Text] [Related]
4. Contrasting behaviour of cadmium and zinc in a soil-plant-arthropod system. Green ID; Jeffries C; Diaz A; Tibbett M Chemosphere; 2006 Aug; 64(7):1115-21. PubMed ID: 16434077 [TBL] [Abstract][Full Text] [Related]
5. Trophic barriers to fertilizer Cd bioaccumulation through the food chain: a case study using a plant--insect predator pathway. Merrington G; Miller D; McLaughlin MJ; Keller MA Arch Environ Contam Toxicol; 2001 Aug; 41(2):151-6. PubMed ID: 11462138 [TBL] [Abstract][Full Text] [Related]
6. Food-chain transfer of zinc from contaminated Urtica dioica and Acer pseudoplatanus L. to the aphids Microlophium carnosum and Drepanosiphum platanoidis Schrank. Sinnett D; Hutchings TR; Hodson ME Environ Pollut; 2010 Jan; 158(1):267-71. PubMed ID: 19640624 [TBL] [Abstract][Full Text] [Related]
7. Effect of zinc fertilization on cadmium toxicity in durum and bread wheat grown in zinc-deficient soil. Köleli N; Eker S; Cakmak I Environ Pollut; 2004 Oct; 131(3):453-9. PubMed ID: 15261409 [TBL] [Abstract][Full Text] [Related]
8. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Liu H; Probst A; Liao B Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766 [TBL] [Abstract][Full Text] [Related]
9. Bioaccumulation assessment via an adapted multi-species soil system (MS.3) and its application using cadmium. Alonso E; González-Núñez M; Carbonell G; Fernández C; Tarazona JV Ecotoxicol Environ Saf; 2009 May; 72(4):1038-44. PubMed ID: 19237196 [TBL] [Abstract][Full Text] [Related]
10. Time-response relationships for the accumulation of Cu, Ni and Zn by seven-spotted ladybirds (Coccinella septempunctata L.) under conditions of single and combined metal exposure. Green ID; Walmsley K Chemosphere; 2013 Sep; 93(1):184-9. PubMed ID: 23810517 [TBL] [Abstract][Full Text] [Related]
11. Bioaccumulation of cadmium, lead, and zinc in agriculture-based insect food chains. Butt A; Qurat-Ul-Ain ; Rehman K; Khan MX; Hesselberg T Environ Monit Assess; 2018 Nov; 190(12):698. PubMed ID: 30397822 [TBL] [Abstract][Full Text] [Related]
12. Metal kinetics and respiration rates in F1 generation of carabid beetles (Pterostichus oblongopunctatus F.) originating from metal-contaminated and reference areas. Lagisz M; Kramarz P; Niklinska M Arch Environ Contam Toxicol; 2005 May; 48(4):484-9. PubMed ID: 15886899 [TBL] [Abstract][Full Text] [Related]
13. Cadmium availability to wheat grain in soils treated with sewage sludge or metal salts. Chaudri A; McGrath S; Gibbs P; Chambers B; Carlton-Smith C; Godley A; Bacon J; Campbell C; Aitken M Chemosphere; 2007 Jan; 66(8):1415-23. PubMed ID: 17109920 [TBL] [Abstract][Full Text] [Related]
14. Uptake and elimination of cadmium and zinc by Eisenia andrei during exposure to low concentrations in artificial soil. Smith BA; Egeler P; Gilberg D; Hendershot W; Stephenson GL Arch Environ Contam Toxicol; 2010 Aug; 59(2):264-73. PubMed ID: 20130851 [TBL] [Abstract][Full Text] [Related]
15. Zinc-cadmium interactions: Impact on wheat physiology and mineral acquisition. Sarwar N; Ishaq W; Farid G; Shaheen MR; Imran M; Geng M; Hussain S Ecotoxicol Environ Saf; 2015 Dec; 122():528-36. PubMed ID: 26426697 [TBL] [Abstract][Full Text] [Related]
16. Cd/Zn exposure interactions on metallothionein response in Eisenia fetida (Annelida, Oligochaeta). Demuynck S; Grumiaux F; Mottier V; Schikorski D; Lemière S; Leprêtre A Comp Biochem Physiol C Toxicol Pharmacol; 2007 May; 145(4):658-68. PubMed ID: 17433784 [TBL] [Abstract][Full Text] [Related]
17. Food-chain transfer of cadmium and zinc from contaminated Urtica dioica to Helix aspersa and Lumbricus terrestris. Sinnett DE; Hodson ME; Hutchings TR Environ Toxicol Chem; 2009 Aug; 28(8):1756-66. PubMed ID: 19292567 [TBL] [Abstract][Full Text] [Related]
18. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils. Koopmans GF; Römkens PF; Fokkema MJ; Song J; Luo YM; Japenga J; Zhao FJ Environ Pollut; 2008 Dec; 156(3):905-14. PubMed ID: 18644664 [TBL] [Abstract][Full Text] [Related]
19. Accumulation and distribution of cadmium and lead in wheat (Triticum aestivum L.) grown in contaminated soils from the oasis, north-west China. Wang ZW; Nan ZR; Wang SL; Zhao ZJ J Sci Food Agric; 2011 Jan; 91(2):377-84. PubMed ID: 21086461 [TBL] [Abstract][Full Text] [Related]
20. Zinc and cadmium regulation efficiency in three ant species originating from a metal pollution gradient. Grześ IM Bull Environ Contam Toxicol; 2010 Jan; 84(1):61-5. PubMed ID: 19823758 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]