These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 19683955)

  • 1. Determination of body segment masses and centers of mass using a force plate method in individuals of different morphology.
    Damavandi M; Farahpour N; Allard P
    Med Eng Phys; 2009 Nov; 31(9):1187-94. PubMed ID: 19683955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An automated image-based method of 3D subject-specific body segment parameter estimation for kinetic analyses of rapid movements.
    Sheets AL; Corazza S; Andriacchi TP
    J Biomech Eng; 2010 Jan; 132(1):011004. PubMed ID: 20524742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anticipatory control of center of mass and joint stability during voluntary arm movement from a standing posture: interplay between active and passive control.
    Patla AE; Ishac MG; Winter DA
    Exp Brain Res; 2002 Apr; 143(3):318-27. PubMed ID: 11889509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Head and trunk segment moments of inertia estimation using angular momentum technique: validity and sensitivity analysis.
    Damavandi M; Stylianides G; Farahpour N; Allard P
    IEEE Trans Biomed Eng; 2011 May; 58(5):1278-85. PubMed ID: 21177155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Masses, centers-of-gravity, and moments-of-inertia of the body segments of the rhesus monkey (Macaca mulatta).
    Vilensky JA
    Am J Phys Anthropol; 1978 Jan; 50(1):57-65. PubMed ID: 104631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of body segment masses and centers of mass using a force plate method.
    Ramsey C; Choi J; Radcliffe CJ; Cholewicki J; Popovich JM; Reeves NP; Priess MC
    Med Eng Phys; 2014 Jun; 36(6):805-6. PubMed ID: 24731507
    [No Abstract]   [Full Text] [Related]  

  • 7. Estimating foot inertial parameters: a new regression approach.
    El Helou A; Gracies JM; Decq P; Skalli W
    Clin Biomech (Bristol, Avon); 2012 Mar; 27(3):299-305. PubMed ID: 22036453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the calculation methods on body moment of inertia estimations in individuals of different morphology.
    Damavandi M; Barbier F; Leboucher J; Farahpour N; Allard P
    Med Eng Phys; 2009 Sep; 31(7):880-6. PubMed ID: 19403324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subject-specific body segment parameters' estimation using biplanar X-rays: a feasibility study.
    Sandoz B; Laporte S; Skalli W; Mitton D
    Comput Methods Biomech Biomed Engin; 2010 Dec; 13(6):649-54. PubMed ID: 21153970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient probabilistic methodology for incorporating uncertainty in body segment parameters and anatomical landmarks in joint loadings estimated from inverse dynamics.
    Langenderfer JE; Laz PJ; Petrella AJ; Rullkoetter PJ
    J Biomech Eng; 2008 Feb; 130(1):014502. PubMed ID: 18298193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of the 3-D center of mass excursion from force-plate data during standing.
    Barbier F; Allard P; Guelton K; Colobert B; Godillon-Maquinghen AP
    IEEE Trans Neural Syst Rehabil Eng; 2003 Mar; 11(1):31-7. PubMed ID: 12797723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving net joint torque calculations through a two-step optimization method for estimating body segment parameters.
    Riemer R; Hsiao-Wecksler ET
    J Biomech Eng; 2009 Jan; 131(1):011007. PubMed ID: 19045923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple method to determine body segment masses in vivo: reliability, accuracy and sensitivity analysis.
    Pataky TC; Zatsiorsky VM; Challis JH
    Clin Biomech (Bristol, Avon); 2003 May; 18(4):364-8. PubMed ID: 12689787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing the determination of the body center of mass.
    Kingma I; Toussaint HM; Commissaris DA; Hoozemans MJ; Ober MJ
    J Biomech; 1995 Sep; 28(9):1137-42. PubMed ID: 7559685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of short-term changes in body mass distribution on feed-forward postural control.
    Li X; Aruin AS
    J Electromyogr Kinesiol; 2009 Oct; 19(5):931-41. PubMed ID: 18614379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating subject-specific body segment parameters using a 3-dimensional modeller program.
    Davidson PL; Wilson SJ; Wilson BD; Chalmers DJ
    J Biomech; 2008 Dec; 41(16):3506-10. PubMed ID: 18995857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass, center of mass, and moment of inertia estimates for infant limb segments.
    Schneider K; Zernicke RF
    J Biomech; 1992 Feb; 25(2):145-8. PubMed ID: 1733990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Head and trunk mass and center of mass position estimations in able-bodied and scoliotic girls.
    Damavandi M; Dalleau G; Stylianides G; Rivard CH; Allard P
    Med Eng Phys; 2013 Nov; 35(11):1607-12. PubMed ID: 23777637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of obesity on accurate and rapid arm movement performed from a standing posture.
    Berrigan F; Simoneau M; Tremblay A; Hue O; Teasdale N
    Int J Obes (Lond); 2006 Dec; 30(12):1750-7. PubMed ID: 16619057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The calculation of a human lumped-mass model from acceleration and force-plate data.
    Shippen J
    Proc Inst Mech Eng H; 2002; 216(5):333-40. PubMed ID: 12365791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.