These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 19683955)

  • 21. Validation of net joint loads calculated by inverse dynamics in case of complex movements: application to balance recovery movements.
    Robert T; Chèze L; Dumas R; Verriest JP
    J Biomech; 2007; 40(11):2450-6. PubMed ID: 17270194
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of three methods to estimate the center of mass during balance assessment.
    Lafond D; Duarte M; Prince F
    J Biomech; 2004 Sep; 37(9):1421-6. PubMed ID: 15275850
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Upper extremity and trunk body segment parameters are affected by BMI and sex.
    Whittaker RL; Vidt ME; Lockley RME; Mourtzakis M; Dickerson CR
    J Biomech; 2021 Mar; 117():110230. PubMed ID: 33493714
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in body segment inertial parameters of obese individuals with weight loss.
    Matrangola SL; Madigan ML; Nussbaum MA; Ross R; Davy KP
    J Biomech; 2008 Nov; 41(15):3278-81. PubMed ID: 18930231
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An identification technique for evaluating body segment parameters in the upper extremity from manipulator-hand contact forces and arm kinematics.
    Kodek T; Munih M
    Clin Biomech (Bristol, Avon); 2006 Aug; 21(7):710-6. PubMed ID: 16675082
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Standing sway: iterative estimation of the kinematics and dynamics of the lower extremities from force-plate measurements.
    Levin O; Mizrahi J; Shoham M
    Biol Cybern; 1998 Apr; 78(4):319-27. PubMed ID: 9652081
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of body segment parameter differences between four human populations and the estimation errors of four popular mathematical models.
    Durkin JL; Dowling JJ
    J Biomech Eng; 2003 Aug; 125(4):515-22. PubMed ID: 12968576
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potential use of bioelectrical impedance of the 'whole body' and of body segments for the assessment of body composition: comparison with densitometry and anthropometry.
    Fuller NJ; Elia M
    Eur J Clin Nutr; 1989 Nov; 43(11):779-91. PubMed ID: 2627926
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fast Determination of the Planar Body Segment Inertial Parameters Using Affordable Sensors.
    Bonnet V; Venture G
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jul; 23(4):628-35. PubMed ID: 25751867
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparison of methods to determine center of mass during pregnancy.
    Catena RD; Connolly CP; McGeorge KM; Campbell N
    J Biomech; 2018 Apr; 71():217-224. PubMed ID: 29463385
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Are fixed limb inertial models valid for dynamic simulations of human movement?
    Clark T; Hawkins D
    J Biomech; 2010 Oct; 43(14):2695-701. PubMed ID: 20673667
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling the postural disturbances caused by upper extremity movements.
    Triolo RJ; Werner KN; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2001 Jun; 9(2):137-44. PubMed ID: 11474966
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The dynamics of postural sway cannot be captured using a one-segment inverted pendulum model: a PCA on segment rotations during unperturbed stance.
    Pinter IJ; van Swigchem R; van Soest AJ; Rozendaal LA
    J Neurophysiol; 2008 Dec; 100(6):3197-208. PubMed ID: 18829852
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two kinematic synergies in voluntary whole-body movements during standing.
    Freitas SM; Duarte M; Latash ML
    J Neurophysiol; 2006 Feb; 95(2):636-45. PubMed ID: 16267118
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ambulatory center of mass prediction using body accelerations and center of foot pressure.
    Betker AL; Moussavi ZM; Szturm T
    IEEE Trans Biomed Eng; 2008 Nov; 55(11):2491-8. PubMed ID: 18990618
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controlling propulsive forces in gait initiation in transfemoral amputees.
    van Keeken HG; Vrieling AH; Hof AL; Halbertsma JP; Schoppen T; Postema K; Otten B
    J Biomech Eng; 2008 Feb; 130(1):011002. PubMed ID: 18298178
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimation of male and female body segment parameters of the Bulgarian population using a 16-segmental mathematical model.
    Nikolova GS; Toshev YE
    J Biomech; 2007; 40(16):3700-7. PubMed ID: 17662989
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study of differences in peripheral muscle strength of lean versus obese women: an allometric approach.
    Hulens M; Vansant G; Lysens R; Claessens AL; Muls E; Brumagne S
    Int J Obes Relat Metab Disord; 2001 May; 25(5):676-81. PubMed ID: 11360150
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The relationship between allometry and preferred transition speed in human locomotion.
    Ranisavljev I; Ilic V; Soldatovic I; Stefanovic D
    Hum Mov Sci; 2014 Apr; 34():196-204. PubMed ID: 24703336
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Balance control during an arm raising movement in bipedal stance: which biomechanical factor is controlled?
    Ferry M; Martin L; Termoz N; Côté J; Prince F
    Biol Cybern; 2004 Aug; 91(2):104-14. PubMed ID: 15338215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.