These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 19684572)

  • 1. Demonstration of a spaser-based nanolaser.
    Noginov MA; Zhu G; Belgrave AM; Bakker R; Shalaev VM; Narimanov EE; Stout S; Herz E; Suteewong T; Wiesner U
    Nature; 2009 Aug; 460(7259):1110-2. PubMed ID: 19684572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Metal Nanoparticles-Graphene Nanodisks-Quantum Dots Hybrid-System-Based Spaser.
    Tohari MM; Lyras A; S AlSalhi M
    Nanomaterials (Basel); 2020 Feb; 10(3):. PubMed ID: 32120985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging the dark emission of spasers.
    Chen HZ; Hu JQ; Wang S; Li B; Wang XY; Wang YL; Dai L; Ma RM
    Sci Adv; 2017 Apr; 3(4):e1601962. PubMed ID: 28439539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems.
    Bergman DJ; Stockman MI
    Phys Rev Lett; 2003 Jan; 90(2):027402. PubMed ID: 12570577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wavelength-tunable spasing in the visible.
    Meng X; Kildishev AV; Fujita K; Tanaka K; Shalaev VM
    Nano Lett; 2013 Sep; 13(9):4106-12. PubMed ID: 23915034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large electromagnetic field enhancement in plasmonic nanoellipse for tunable spaser based applications.
    Jamil S; Farooq W; Ullah N; Daud Khan A; Khalil UK; Mosavi A
    PLoS One; 2022; 17(3):e0263630. PubMed ID: 35298478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unidirectional spaser in symmetry-broken plasmonic core-shell nanocavity.
    Meng X; Guler U; Kildishev AV; Fujita K; Tanaka K; Shalaev VM
    Sci Rep; 2013; 3():1241. PubMed ID: 23393623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dye-doped polystyrene-coated gold nanorods: towards wavelength tuneable SPASER.
    Gu P; Birch DJS; Chen Y
    Methods Appl Fluoresc; 2014 Apr; 2(2):024004. PubMed ID: 29148460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free electrons excited SPASER.
    Ye Y; Liu F; Cui K; Feng X; Zhang W; Huang Y
    Opt Express; 2018 Nov; 26(24):31402-31412. PubMed ID: 30650726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lasing Spaser in Photonic Crystals.
    Parkhomenko RG; Kuchyanov AS; Knez M; Stockman MI
    ACS Omega; 2021 Feb; 6(6):4417-4422. PubMed ID: 33623849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spaser Nanoparticles for Ultranarrow Bandwidth STED Super-Resolution Imaging.
    Gao Z; Wang JH; Song P; Kang B; Xu JJ; Chen HY
    Adv Mater; 2020 Mar; 32(9):e1907233. PubMed ID: 31957100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semiconductor plasmonic nanolasers: current status and perspectives.
    Gwo S; Shih CK
    Rep Prog Phys; 2016 Aug; 79(8):086501. PubMed ID: 27459210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic bowtie nanolaser arrays.
    Suh JY; Kim CH; Zhou W; Huntington MD; Co DT; Wasielewski MR; Odom TW
    Nano Lett; 2012 Nov; 12(11):5769-74. PubMed ID: 23013283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spaser made of graphene and carbon nanotubes.
    Rupasinghe C; Rukhlenko ID; Premaratne M
    ACS Nano; 2014 Mar; 8(3):2431-8. PubMed ID: 24559464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal nanoparticle plasmons operating within a quantum lifetime.
    Taşgın ME
    Nanoscale; 2013 Sep; 5(18):8616-24. PubMed ID: 23897124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compact Plasmonic Distributed-Feedback Lasers as Dark Sources of Surface Plasmon Polaritons.
    Brechbühler R; Vonk SJW; Aellen M; Lassaline N; Keitel RC; Cocina A; Rossinelli AA; Rabouw FT; Norris DJ
    ACS Nano; 2021 Jun; 15(6):9935-9944. PubMed ID: 34029074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon lasers at deep subwavelength scale.
    Oulton RF; Sorger VJ; Zentgraf T; Ma RM; Gladden C; Dai L; Bartal G; Zhang X
    Nature; 2009 Oct; 461(7264):629-32. PubMed ID: 19718019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magneto-optical spaser.
    Baranov DG; Vinogradov AP; Lisyansky AA; Strelniker YM; Bergman DJ
    Opt Lett; 2013 Jun; 38(12):2002-4. PubMed ID: 23938957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.