These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 19684894)

  • 1. Nanoshell-based substrates for surface enhanced spectroscopic detection of biomolecules.
    Levin CS; Kundu J; Barhoumi A; Halas NJ
    Analyst; 2009 Sep; 134(9):1745-50. PubMed ID: 19684894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailoring plasmonic substrates for surface enhanced spectroscopies.
    Lal S; Grady NK; Kundu J; Levin CS; Lassiter JB; Halas NJ
    Chem Soc Rev; 2008 May; 37(5):898-911. PubMed ID: 18443675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal nanoshells.
    Hirsch LR; Gobin AM; Lowery AR; Tam F; Drezek RA; Halas NJ; West JL
    Ann Biomed Eng; 2006 Jan; 34(1):15-22. PubMed ID: 16528617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determining the conformation of thiolated poly(ethylene glycol) on Au nanoshells by surface-enhanced Raman scattering spectroscopic assay.
    Levin CS; Bishnoi SW; Grady NK; Halas NJ
    Anal Chem; 2006 May; 78(10):3277-81. PubMed ID: 16689527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-enhanced Raman scattering from ordered Ag nanocluster arrays.
    Schmidt JP; Cross SE; Buratto SK
    J Chem Phys; 2004 Dec; 121(21):10657-9. PubMed ID: 15549949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption.
    Le F; Brandl DW; Urzhumov YA; Wang H; Kundu J; Halas NJ; Aizpurua J; Nordlander P
    ACS Nano; 2008 Apr; 2(4):707-18. PubMed ID: 19206602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silver-coated zeolite crystal films as surface-enhanced Raman scattering substrates.
    Yan W; Bao L; Mahurin SM; Dai S
    Appl Spectrosc; 2004 Jan; 58(1):18-25. PubMed ID: 14727716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface enhanced optical spectroscopies for bioanalysis.
    Larmour IA; Graham D
    Analyst; 2011 Oct; 136(19):3831-53. PubMed ID: 21779583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonics-based nanostructures for surface-enhanced Raman scattering bioanalysis.
    Vo-Dinh T; Yan F; Stokes DL
    Methods Mol Biol; 2005; 300():255-83. PubMed ID: 15657488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-wave approximation for hybridization modeling of local surface plasmonic resonance in nanoshells.
    Li BQ; Liu C
    Opt Lett; 2011 Jan; 36(2):247-9. PubMed ID: 21263515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quadrupole-enhanced Raman scattering.
    Hastings SP; Swanglap P; Qian Z; Fang Y; Park SJ; Link S; Engheta N; Fakhraai Z
    ACS Nano; 2014 Sep; 8(9):9025-34. PubMed ID: 25157600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable near-infrared optical properties of three-layered metal nanoshells.
    Wu D; Xu X; Liu X
    J Chem Phys; 2008 Aug; 129(7):074711. PubMed ID: 19044796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable hybridization in metal nanoshell chains.
    Ling CW; Zheng MJ; Yu KW
    J Phys Condens Matter; 2011 Mar; 23(10):105304. PubMed ID: 21339586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density-matrix calculation of surface-enhanced Raman scattering for p-mercaptoaniline on silver nanoshells.
    Gibson JW; Johnson BR
    J Chem Phys; 2006 Feb; 124(6):64701. PubMed ID: 16483223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis.
    Smith WE
    Chem Soc Rev; 2008 May; 37(5):955-64. PubMed ID: 18443681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemically selective sensing through layer-by-layer incorporation of biorecognition into thin film substrates for surface-enhanced resonance Raman scattering.
    Pieczonka NP; Goulet PJ; Aroca RF
    J Am Chem Soc; 2006 Oct; 128(39):12626-7. PubMed ID: 17002338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological applications of localised surface plasmonic phenomenae.
    Stuart DA; Haes AJ; Yonzon CR; Hicks EM; Van Duyne RP
    IEE Proc Nanobiotechnol; 2005 Feb; 152(1):13-32. PubMed ID: 16441155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable surface plasmon resonance and strong SERS performances of Au opening-nanoshell ordered arrays.
    Liu G; Li Y; Duan G; Wang J; Changhao ; Liang ; Cai W
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):1-5. PubMed ID: 22171761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.