BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 19685111)

  • 1. Acid-base variables in patients with acute kidney injury requiring peritoneal dialysis in the pediatric cardiac care unit.
    Morimatsu H; Toda Y; Egi M; Shimizu K; Matsusaki T; Suzuki S; Iwasaki T; Morita K
    J Anesth; 2009; 23(3):334-40. PubMed ID: 19685111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of continuous veno-venous hemofiltration on acid-base balance.
    Rocktäschel J; Morimatsu H; Uchino S; Ronco C; Bellomo R
    Int J Artif Organs; 2003 Jan; 26(1):19-25. PubMed ID: 12602465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic acidosis and strong ion gap in critically ill patients with acute kidney injury.
    Zheng CM; Liu WC; Zheng JQ; Liao MT; Ma WY; Hung KC; Lu CL; Wu CC; Lu KC
    Biomed Res Int; 2014; 2014():819528. PubMed ID: 25162029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stewart analysis of apparently normal acid-base state in the critically ill.
    Moviat M; van den Boogaard M; Intven F; van der Voort P; van der Hoeven H; Pickkers P
    J Crit Care; 2013 Dec; 28(6):1048-54. PubMed ID: 23910568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unmeasured anions identified by the Fencl-Stewart method predict mortality better than base excess, anion gap, and lactate in patients in the pediatric intensive care unit.
    Balasubramanyan N; Havens PL; Hoffman GM
    Crit Care Med; 1999 Aug; 27(8):1577-81. PubMed ID: 10470767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of a new simplified acid-base tool to the original Stewart-Figge approach: a study on cardiac surgical patients.
    Agrafiotis M; Mpliamplias D; Papathanassiou M; Ampatzidou F; Drossos G
    J Anesth; 2018 Aug; 32(4):499-505. PubMed ID: 29725827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acid-base status of critically ill patients with acute renal failure: analysis based on Stewart-Figge methodology.
    Rocktaeschel J; Morimatsu H; Uchino S; Goldsmith D; Poustie S; Story D; Gutteridge G; Bellomo R
    Crit Care; 2003 Aug; 7(4):R60. PubMed ID: 12930557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acid-base disturbances in nephrotic syndrome: analysis using the CO
    Kasagi T; Imai H; Miura N; Suzuki K; Yoshino M; Nobata H; Nagai T; Banno S
    Clin Exp Nephrol; 2017 Oct; 21(5):866-876. PubMed ID: 28289910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unmeasured anions in critically ill patients: can they predict mortality?
    Rocktaeschel J; Morimatsu H; Uchino S; Bellomo R
    Crit Care Med; 2003 Aug; 31(8):2131-6. PubMed ID: 12973170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acid-base balance in combined severe hepatic and renal failure: a quantitative analysis.
    Naka T; Bellomo R; Morimatsu H; Rocktaschel J; Wan L; Gow P; Angus P
    Int J Artif Organs; 2008 Apr; 31(4):288-94. PubMed ID: 18432583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-dose citrate continuous veno-venous hemofiltration (CVVH) and acid-base balance.
    Naka T; Egi M; Bellomo R; Cole L; French C; Wan L; Fealy N; Baldwin I
    Int J Artif Organs; 2005 Mar; 28(3):222-8. PubMed ID: 15818544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acid-base balance in acute renal failure and renal replacement therapy.
    Leblanc M
    Best Pract Res Clin Anaesthesiol; 2004 Mar; 18(1):113-27. PubMed ID: 14760877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defining metabolic acidosis in patients with septic shock using Stewart approach.
    Mallat J; Michel D; Salaun P; Thevenin D; Tronchon L
    Am J Emerg Med; 2012 Mar; 30(3):391-8. PubMed ID: 21277142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acid-base balance in peritoneal dialysis patients: a Stewart-Fencl analysis.
    Klaboch J; Opatrná S; Matousovic K; Sefrna F; Havlín J; Schück O
    Ren Fail; 2009; 31(8):625-32. PubMed ID: 19817518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simplified quantitative acid-base approach for patients with acute respiratory diseases.
    Agrafiotis M; Papathanassiou M; Karachristos C; Kerezidou E; Tryfon S; Serasli E; Chloros D
    J Clin Monit Comput; 2020 Feb; 34(1):21-28. PubMed ID: 30953221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperchloraemic metabolic acidosis following open cardiac surgery.
    Hatherill M; Salie S; Waggie Z; Lawrenson J; Hewitson J; Reynolds L; Argent A
    Arch Dis Child; 2005 Dec; 90(12):1288-92. PubMed ID: 16159902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peritoneal Dialysis Treatment in Small Children with Acute Kidney Injury: Experience in Northwest China.
    Li H; Yang S; Jin L; Wang Z; Xie L; Lv J; Yin A; Lu W
    Blood Purif; 2019; 48(4):315-320. PubMed ID: 31357204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The hidden secrets of a neutral pH-blood gas analysis of postoperative patients according to the Stewart approach.
    Janssen JW; van Fessem JMK; Ris T; Stolker RJ; Klimek M
    Perioper Med (Lond); 2021 Jun; 10(1):15. PubMed ID: 34099036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical chemical approach versus traditional technique in analyzing blood gases and electrolytes during liver transplant surgery.
    Ali Y; Abouelnaga S; Khalaf H; Kamel Y
    Transplant Proc; 2010 Apr; 42(3):861-4. PubMed ID: 20430191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining acidosis in postoperative cardiac patients using Stewart's method of strong ion difference.
    Murray DM; Olhsson V; Fraser JI
    Pediatr Crit Care Med; 2004 May; 5(3):240-5. PubMed ID: 15115561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.