BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

547 related articles for article (PubMed ID: 19685240)

  • 1. Advances in molecular methods to alter chromosomes and genome in the yeast Saccharomyces cerevisiae.
    Sugiyama M; Yamagishi K; Kim YH; Kaneko Y; Nishizawa M; Harashima S
    Appl Microbiol Biotechnol; 2009 Oct; 84(6):1045-52. PubMed ID: 19685240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosome-shuffling technique for selected chromosomal segments in Saccharomyces cerevisiae.
    Sugiyama M; Yamamoto E; Mukai Y; Kaneko Y; Nishizawa M; Harashima S
    Appl Microbiol Biotechnol; 2006 Oct; 72(5):947-52. PubMed ID: 16505990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic engineering of industrial strains of Saccharomyces cerevisiae.
    Le Borgne S
    Methods Mol Biol; 2012; 824():451-65. PubMed ID: 22160914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel system of genetic transformation allows multiple integrations of a desired gene in Saccharomyces cerevisiae chromosomes.
    Guerra OG; Rubio IG; da Silva Filho CG; Bertoni RA; Dos Santos Govea RC; Vicente EJ
    J Microbiol Methods; 2006 Dec; 67(3):437-45. PubMed ID: 16831478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide patterns of histone modifications in yeast.
    Millar CB; Grunstein M
    Nat Rev Mol Cell Biol; 2006 Sep; 7(9):657-66. PubMed ID: 16912715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic constitution of industrial yeast.
    Benítez T; Martínez P; Codón AC
    Microbiologia; 1996 Sep; 12(3):371-84. PubMed ID: 8897417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies for the genetic manipulation of Saccharomyces cerevisiae.
    Tuite MF
    Crit Rev Biotechnol; 1992; 12(1-2):157-88. PubMed ID: 1733520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction and characterization of single-gene chromosomes in Saccharomyces cerevisiae.
    Yamagishi K; Sugiyama M; Kaneko Y; Nishizawa M; Harashima S
    J Biosci Bioeng; 2008 Dec; 106(6):563-7. PubMed ID: 19134552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-existence of two types of chromosome in the bottom fermenting yeast, Saccharomyces pastorianus.
    Tamai Y; Momma T; Yoshimoto H; Kaneko Y
    Yeast; 1998 Jul; 14(10):923-33. PubMed ID: 9717238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gradual genome stabilisation by progressive reduction of the Saccharomyces uvarum genome in an interspecific hybrid with Saccharomyces cerevisiae.
    Antunovics Z; Nguyen HV; Gaillardin C; Sipiczki M
    FEMS Yeast Res; 2005 Dec; 5(12):1141-50. PubMed ID: 15982931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PCR-mediated one-step deletion of targeted chromosomal regions in haploid Saccharomyces cerevisiae.
    Sugiyama M; Nakazawa T; Murakami K; Sumiya T; Nakamura A; Kaneko Y; Nishizawa M; Harashima S
    Appl Microbiol Biotechnol; 2008 Sep; 80(3):545-53. PubMed ID: 18677473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Common industrial sake yeast strains have three copies of the AQY1-ARR3 region of chromosome XVI in their genomes.
    Ogihara F; Kitagaki H; Wang Q; Shimoi H
    Yeast; 2008 Jun; 25(6):419-32. PubMed ID: 18509847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tools for the study of genome rearrangements in laboratory and industrial yeast strains.
    Lockhart L; Oliver SG; Delneri D
    Yeast; 2002 Mar; 19(5):441-8. PubMed ID: 11921092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosome instability in industrial strains of Saccharomyces cerevisiae batch cultivated under laboratory conditions.
    Lucena BT; Silva-Filho EA; Coimbra MR; Morais JO; Simões DA; Morais MA
    Genet Mol Res; 2007 Oct; 6(4):1072-84. PubMed ID: 18273800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization of mini-chromosome segregation during mitotic growth by overexpression of YCR041W and its application to chromosome engineering in Saccharomyces cerevisiae.
    Sasano Y; Yamagishi K; Tanikawa M; Nakazawa T; Sugiyama M; Kaneko Y; Harashima S
    J Biosci Bioeng; 2015 May; 119(5):526-31. PubMed ID: 25454064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Replication dynamics of the yeast genome.
    Raghuraman MK; Winzeler EA; Collingwood D; Hunt S; Wodicka L; Conway A; Lockhart DJ; Davis RW; Brewer BJ; Fangman WL
    Science; 2001 Oct; 294(5540):115-21. PubMed ID: 11588253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large scale deletions in the Saccharomyces cerevisiae genome create strains with altered regulation of carbon metabolism.
    Murakami K; Tao E; Ito Y; Sugiyama M; Kaneko Y; Harashima S; Sumiya T; Nakamura A; Nishizawa M
    Appl Microbiol Biotechnol; 2007 Jun; 75(3):589-97. PubMed ID: 17345083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae.
    Flagfeldt DB; Siewers V; Huang L; Nielsen J
    Yeast; 2009 Oct; 26(10):545-51. PubMed ID: 19681174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Ethanol tolerance in yeast: molecular mechanisms and genetic engineering].
    Zhang Q; Zhao X; Jiang R; Li Q; Bai F
    Sheng Wu Gong Cheng Xue Bao; 2009 Apr; 25(4):481-7. PubMed ID: 19637619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient use of DNA molecular markers to construct industrial yeast strains.
    Marullo P; Yvert G; Bely M; Aigle M; Dubourdieu D
    FEMS Yeast Res; 2007 Dec; 7(8):1295-306. PubMed ID: 17888000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.