These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 19685312)

  • 1. Novel tools for use in bioluminescence resonance energy transfer (BRET) assays.
    Robitaille M; Héroux I; Baragli A; Hébert TE
    Methods Mol Biol; 2009; 574():215-34. PubMed ID: 19685312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of protein-protein interactions using bioluminescence resonance energy transfer.
    Pfleger KD
    Methods Mol Biol; 2009; 574():173-83. PubMed ID: 19685308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel, isotype-specific sensors for protein kinase A subunit interaction based on bioluminescence resonance energy transfer (BRET).
    Prinz A; Diskar M; Erlbruch A; Herberg FW
    Cell Signal; 2006 Oct; 18(10):1616-25. PubMed ID: 16524697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of ERalpha-SRC-1 interactions using bioluminescent resonance energy transfer.
    Duplessis TT; Koterba KL; Rowan BG
    Methods Mol Biol; 2009; 590():253-63. PubMed ID: 19763509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting and imaging protein-protein interactions during G protein-mediated signal transduction in vivo and in situ by using fluorescence-based techniques.
    Hébert TE; Galés C; Rebois RV
    Cell Biochem Biophys; 2006; 45(1):85-109. PubMed ID: 16679566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence-based methods in the study of protein-protein interactions in living cells.
    Ciruela F
    Curr Opin Biotechnol; 2008 Aug; 19(4):338-43. PubMed ID: 18602005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The BRET technology and its application to screening assays.
    Bacart J; Corbel C; Jockers R; Bach S; Couturier C
    Biotechnol J; 2008 Mar; 3(3):311-24. PubMed ID: 18228541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioluminescence resonance energy transfer (BRET) for the real-time detection of protein-protein interactions.
    Pfleger KD; Seeber RM; Eidne KA
    Nat Protoc; 2006; 1(1):337-45. PubMed ID: 17406254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional complementation of high-efficiency resonance energy transfer: a new tool for the study of protein binding interactions in living cells.
    Molinari P; Casella I; Costa T
    Biochem J; 2008 Jan; 409(1):251-61. PubMed ID: 17868039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time BRET assays to measure G protein/effector interactions.
    Pétrin D; Robitaille M; Hébert TE
    Methods Mol Biol; 2011; 756():245-61. PubMed ID: 21870230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of in vitro SUMOylation using bioluminescence resonance energy transfer (BRET).
    Kim YP; Jin Z; Kim E; Park S; Oh YH; Kim HS
    Biochem Biophys Res Commun; 2009 May; 382(3):530-4. PubMed ID: 19289109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homo- and hetero-oligomeric interactions between G-protein-coupled receptors in living cells monitored by two variants of bioluminescence resonance energy transfer (BRET): hetero-oligomers between receptor subtypes form more efficiently than between less closely related sequences.
    Ramsay D; Kellett E; McVey M; Rees S; Milligan G
    Biochem J; 2002 Jul; 365(Pt 2):429-40. PubMed ID: 11971762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET).
    Pfleger KD; Eidne KA
    Nat Methods; 2006 Mar; 3(3):165-74. PubMed ID: 16489332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring interactions between receptor tyrosine kinases and their downstream effector proteins in living cells using bioluminescence resonance energy transfer.
    Tan PK; Wang J; Littler PL; Wong KK; Sweetnam TA; Keefe W; Nash NR; Reding EC; Piu F; Brann MR; Schiffer HH
    Mol Pharmacol; 2007 Dec; 72(6):1440-6. PubMed ID: 17715395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioluminescence resonance energy transfer to monitor protein-protein interactions.
    Issad T; Jockers R
    Methods Mol Biol; 2006; 332():195-209. PubMed ID: 16878694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring the activation state of the insulin-like growth factor-1 receptor and its interaction with protein tyrosine phosphatase 1B using bioluminescence resonance energy transfer.
    Blanquart C; Boute N; Lacasa D; Issad T
    Mol Pharmacol; 2005 Sep; 68(3):885-94. PubMed ID: 15976035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer.
    James JR; Oliveira MI; Carmo AM; Iaboni A; Davis SJ
    Nat Methods; 2006 Dec; 3(12):1001-6. PubMed ID: 17086179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of higher-order G protein-coupled receptor oligomers by a combined BRET-BiFC technique.
    Gandia J; Galino J; Amaral OB; Soriano A; Lluís C; Franco R; Ciruela F
    FEBS Lett; 2008 Sep; 582(20):2979-84. PubMed ID: 18675812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Demonstration of a homogeneous noncompetitive immunoassay based on bioluminescence resonance energy transfer.
    Arai R; Nakagawa H; Tsumoto K; Mahoney W; Kumagai I; Ueda H; Nagamune T
    Anal Biochem; 2001 Feb; 289(1):77-81. PubMed ID: 11161297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Luciferase-YFP fusion tag with enhanced emission for single-cell luminescence imaging.
    Hoshino H; Nakajima Y; Ohmiya Y
    Nat Methods; 2007 Aug; 4(8):637-9. PubMed ID: 17618293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.