These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 19685897)

  • 41. Probing innovative microfabricated substrates for their reproducible SERS activity.
    Cialla D; Hübner U; Schneidewind H; Möller R; Popp J
    Chemphyschem; 2008 Apr; 9(5):758-62. PubMed ID: 18383239
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Controllable nanofabrication of aggregate-like nanoparticle substrates and evaluation for surface-enhanced Raman spectroscopy.
    Wells SM; Retterer SD; Oran JM; Sepaniak MJ
    ACS Nano; 2009 Dec; 3(12):3845-53. PubMed ID: 19911835
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates.
    Freeman RG; Grabar KC; Allison KJ; Bright RM; Davis JA; Guthrie AP; Hommer MB; Jackson MA; Smith PC; Walter DG; Natan MJ
    Science; 1995 Mar; 267(5204):1629-32. PubMed ID: 17808180
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Surface-enhanced Raman spectroscopy biosensors: excitation spectroscopy for optimisation of substrates fabricated by nanosphere lithography.
    Zhang X; Yonzon CR; Young MA; Stuart DA; Van Duyne RP
    IEE Proc Nanobiotechnol; 2005 Dec; 152(6):195-206. PubMed ID: 16441180
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Experimental (SERS) and theoretical (DFT) studies on the adsorption of p-, m-, and o-nitroaniline on gold nanoparticles.
    Ma W; Fang Y
    J Colloid Interface Sci; 2006 Nov; 303(1):1-8. PubMed ID: 16949090
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tuning Localized Surface Plasmon Resonance of Nanoporous Gold with a Silica Shell for Surface Enhanced Raman Scattering.
    Li W; Ma C; Zhang L; Chen B; Chen L; Zeng H
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30759881
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gold-coated nanorod arrays as highly sensitive substrates for surface-enhanced raman spectroscopy.
    Fan JG; Zhao YP
    Langmuir; 2008 Dec; 24(24):14172-5. PubMed ID: 19053654
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Silver nanoparticle thin films with nanocavities for surface-enhanced Raman scattering.
    Kahraman M; Tokman N; Culha M
    Chemphyschem; 2008 Apr; 9(6):902-10. PubMed ID: 18366038
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deposition method for preparing SERS-active gold nanoparticle substrates.
    Kho KW; Shen ZX; Zeng HC; Soo KC; Olivo M
    Anal Chem; 2005 Nov; 77(22):7462-71. PubMed ID: 16285701
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surface-enhanced Raman scattering from intracellular and extracellular bacterial locations.
    Jarvis RM; Law N; Shadi IT; O'Brien P; Lloyd JR; Goodacre R
    Anal Chem; 2008 Sep; 80(17):6741-6. PubMed ID: 18661956
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Direct evidence of chemical effect of surface-enhanced Raman scattering observed on electrochemically prepared rough gold substrates.
    Liu YC; Yang KH; Hsu TC
    Anal Chim Acta; 2009 Mar; 636(1):13-8. PubMed ID: 19231350
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development of a heat-induced surface-enhanced Raman scattering sensing method for rapid detection of glutathione in aqueous solutions.
    Huang GG; Han XX; Hossain MK; Ozaki Y
    Anal Chem; 2009 Jul; 81(14):5881-8. PubMed ID: 19518138
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering.
    Mu C; Zhang JP; Xu D
    Nanotechnology; 2010 Jan; 21(1):015604. PubMed ID: 19946166
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development of gold-silica composite nanoparticle substrates for perchlorate detection by surface-enhanced Raman spectroscopy.
    Wang W; Ruan C; Gu B
    Anal Chim Acta; 2006 May; 567(1):121-6. PubMed ID: 17723388
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tuning plasmons on nano-structured substrates for NIR-SERS.
    Mahajan S; Abdelsalam M; Suguwara Y; Cintra S; Russell A; Baumberg J; Bartlett P
    Phys Chem Chem Phys; 2007 Jan; 9(1):104-9. PubMed ID: 17164891
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Single nanowire on a film as an efficient SERS-active platform.
    Yoon I; Kang T; Choi W; Kim J; Yoo Y; Joo SW; Park QH; Ihee H; Kim B
    J Am Chem Soc; 2009 Jan; 131(2):758-62. PubMed ID: 19099471
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of layer structures of gold nanoparticle films on surface enhanced Raman scattering.
    Oh MK; Yun S; Kim SK; Park S
    Anal Chim Acta; 2009 Sep; 649(1):111-6. PubMed ID: 19664470
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Controlled fabrication of nanopillar arrays as active substrates for surface-enhanced Raman spectroscopy.
    Ruan C; Eres G; Wang W; Zhang Z; Gu B
    Langmuir; 2007 May; 23(10):5757-60. PubMed ID: 17425344
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Trace detection of triphenylene by surface enhanced Raman spectroscopy using functionalized silver nanoparticles with bis-acridinium lucigenine.
    López-Tocón I; Otero JC; Arenas JF; García-Ramos JV; Sánchez-Cortés S
    Langmuir; 2010 May; 26(10):6977-81. PubMed ID: 20205417
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Single gold microshell tailored to sensitive surface enhanced Raman scattering probe.
    Piao L; Park S; Lee HB; Kim K; Kim J; Chung TD
    Anal Chem; 2010 Jan; 82(1):447-51. PubMed ID: 19994858
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.