These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 19685923)

  • 1. Kinetic study of hydrodechlorination of chlorobiphenyl with polymer-stabilized palladium nanoparticles in supercritical carbon dioxide.
    Liao W; Pan HB; Liu HW; Chen HJ; Wai CM
    J Phys Chem A; 2009 Sep; 113(36):9772-8. PubMed ID: 19685923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Destruction of pentachlorobiphenyl in soil by supercritical CO(2) extraction coupled with polymer-stabilized palladium nanoparticles.
    Wang JS; Chiu K
    Chemosphere; 2009 May; 75(5):629-633. PubMed ID: 19211124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of lindane and hexachlorobenzene in supercritical carbon dioxide using palladium nanoparticles stabilized in microcellular high-density polyethylene.
    Wu BZ; Chen G; Yak H; Liao W; Chiu K; Peng SM
    Chemosphere; 2016 Jun; 152():345-52. PubMed ID: 26994428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic hydrogenation rate of polycyclic aromatic hydrocarbons in supercritical carbon dioxide containing polymer-stabilized palladium nanoparticles.
    Liao W; Liu HW; Chen HJ; Chang WY; Chiu KH; Wai CM
    Chemosphere; 2011 Jan; 82(4):573-80. PubMed ID: 21030065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Swelled plastics in supercritical CO2 as media for stabilization of metal nanoparticles and for catalytic hydrogenation.
    Ohde H; Ohde M; Wai CM
    Chem Commun (Camb); 2004 Apr; (8):930-1. PubMed ID: 15069480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic hydrogenation of polyaromatic hydrocarbon (PAH) compounds in supercritical carbon dioxide over supported palladium.
    Yuan T; Marshall WD
    J Environ Monit; 2007 Dec; 9(12):1344-51. PubMed ID: 18049773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micelle-hosted palladium nanoparticles catalyze citral molecule hydrogenation in supercritical carbon dioxide.
    Meric P; Yu KM; Tsang SC
    Langmuir; 2004 Sep; 20(20):8537-45. PubMed ID: 15379472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrocatalytic hydrodechlorination of 4-chlorobiphenyl in aqueous solution using palladized nickel foam cathode.
    Yang B; Yu G; Shuai D
    Chemosphere; 2007 Apr; 67(7):1361-7. PubMed ID: 17141295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of catalytic reactions on nanoclusters.
    Murzin DY
    Langmuir; 2010 Apr; 26(7):4854-9. PubMed ID: 20017508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of silica nanoparticles in supercritical carbon dioxide.
    Vishnyakov A; Shen Y; Tomassone MS
    J Chem Phys; 2008 Nov; 129(17):174704. PubMed ID: 19045367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics and mechanism for the reaction of hexafluoroacetylacetone with CuO in supercritical carbon dioxide.
    Durando M; Morrish R; Muscat AJ
    J Am Chem Soc; 2008 Dec; 130(49):16659-68. PubMed ID: 19049461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depositing ordered arrays of metal sulfide nanoparticles in nanostructures using supercritical fluid carbon dioxide.
    Wang JS; Smetana AB; Boeckl JJ; Brown GJ; Wai CM
    Langmuir; 2010 Jan; 26(2):1117-23. PubMed ID: 20000595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective oxidation of alkanes with molecular oxygen and acetaldehyde in compressed (supercritical) carbon dioxide as reaction medium.
    Theyssen N; Hou Z; Leitner W
    Chemistry; 2006 Apr; 12(12):3401-9. PubMed ID: 16453367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of temperature and pressure on surface tension of polystyrene in supercritical carbon dioxide.
    Park H; Thompson RB; Lanson N; Tzoganakis C; Park CB; Chen P
    J Phys Chem B; 2007 Apr; 111(15):3859-68. PubMed ID: 17388548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biphasic aerobic oxidation of alcohols catalyzed by poly(ethylene glycol)-stabilized palladium nanoparticles in supercritical carbon dioxide.
    Hou Z; Theyssen N; Brinkmann A; Leitner W
    Angew Chem Int Ed Engl; 2005 Feb; 44(9):1346-9. PubMed ID: 15674991
    [No Abstract]   [Full Text] [Related]  

  • 16. A new context for palladium mediated B-addition reaction: an open door to consecutive functionalization.
    Pubill-Ulldemolins C; Bonet A; Bo C; Gulyás H; Fernández E
    Org Biomol Chem; 2010 Jun; 8(12):2667-82. PubMed ID: 20440437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of principal component analysis to the thermal characterization of silanized nanoparticles obtained at supercritical carbon dioxide conditions.
    García-González CA; Andanson JM; Kazarian SG; Domingo C; Saurina J
    Anal Chim Acta; 2009 Mar; 635(2):227-34. PubMed ID: 19216883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle catalysed oxidation of sulfides to sulfones by in situ generated H2O2 in supercritical carbon dioxide/water biphasic medium.
    Karmee SK; Greiner L; Kraynov A; Müller TE; Niemeijer B; Leitner W
    Chem Commun (Camb); 2010 Sep; 46(36):6705-7. PubMed ID: 20714543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extraction of uranium from aqueous solutions by using ionic liquid and supercritical carbon dioxide in conjunction.
    Wang JS; Sheaff CN; Yoon B; Addleman RS; Wai CM
    Chemistry; 2009; 15(17):4458-63. PubMed ID: 19283821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of silane-coated TiO2 nanoparticles in supercritical CO2.
    García-González CA; Fraile J; López-Periago A; Domingo C
    J Colloid Interface Sci; 2009 Oct; 338(2):491-9. PubMed ID: 19625025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.