BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 19686136)

  • 21. The neuronal correlates of intranasal trigeminal function-an ALE meta-analysis of human functional brain imaging data.
    Albrecht J; Kopietz R; Frasnelli J; Wiesmann M; Hummel T; Lundström JN
    Brain Res Rev; 2010 Mar; 62(2):183-96. PubMed ID: 19913573
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lateralisation of intranasal trigeminal chemosensory event-related potentials.
    Rombaux P; Guérit JM; Mouraux A
    Neurophysiol Clin; 2008 Feb; 38(1):23-30. PubMed ID: 18329547
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Usefulness and feasibility of psychophysical and electrophysiological olfactory testing in the rhinology clinic.
    Rombaux P; Mouraux A; Collet S; Eloy P; Bertrand B
    Rhinology; 2009 Mar; 47(1):28-35. PubMed ID: 19382491
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of olfactory and trigeminal function using chemosensory event-related potentials.
    Rombaux P; Mouraux A; Bertrand B; Guerit JM; Hummel T
    Neurophysiol Clin; 2006; 36(2):53-62. PubMed ID: 16844543
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Perspectives on olfactory processing, conscious perception, and orbitofrontal cortex.
    Shepherd GM
    Ann N Y Acad Sci; 2007 Dec; 1121():87-101. PubMed ID: 17872397
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Signal-to-noise ratio of chemosensory event-related potentials.
    Boesveldt S; Haehner A; Berendse HW; Hummel T
    Clin Neurophysiol; 2007 Mar; 118(3):690-5. PubMed ID: 17188566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Olfactory-induced brain activity in Parkinson's disease relates to the expression of event-related potentials: a functional magnetic resonance imaging study.
    Welge-Lüssen A; Wattendorf E; Schwerdtfeger U; Fuhr P; Bilecen D; Hummel T; Westermann B
    Neuroscience; 2009 Aug; 162(2):537-43. PubMed ID: 19401224
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intranasal trigeminal function in children.
    Hummel T; Roudnitzky N; Kempter W; Laing DG
    Dev Med Child Neurol; 2007 Nov; 49(11):849-53. PubMed ID: 17979864
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Localisation of unilateral nasal stimuli across sensory systems.
    Frasnelli J; La Buissonnière Ariza V; Collignon O; Lepore F
    Neurosci Lett; 2010 Jul; 478(2):102-6. PubMed ID: 20451578
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Loss of trigeminal sensitivity reduces olfactory function.
    Husner A; Frasnelli J; Welge-Lüssen A; Reiss G; Zahnert T; Hummel T
    Laryngoscope; 2006 Aug; 116(8):1520-2. PubMed ID: 16885765
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemosensory properties of human sweat.
    Zernecke R; Kleemann AM; Haegler K; Albrecht J; Vollmer B; Linn J; Brückmann H; Wiesmann M
    Chem Senses; 2010 Feb; 35(2):101-8. PubMed ID: 19948559
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photoactivation of olfactory sensory neurons does not affect action potential conduction in individual trigeminal sensory axons innervating the rodent nasal cavity.
    Maurer M; Papotto N; Sertel-Nakajima J; Schueler M; De Col R; Möhrlen F; Messlinger K; Frings S; Carr RW
    PLoS One; 2019; 14(8):e0211175. PubMed ID: 31412038
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Responsiveness of human nasal mucosa to trigeminal stimuli depends on the site of stimulation.
    Frasnelli J; Heilmann S; Hummel T
    Neurosci Lett; 2004 May; 362(1):65-9. PubMed ID: 15147782
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PET-based investigation of cerebral activation following intranasal trigeminal stimulation.
    Hummel T; Oehme L; van den Hoff J; Gerber J; Heinke M; Boyle JA; Beuthien-Baumann B
    Hum Brain Mapp; 2009 Apr; 30(4):1100-4. PubMed ID: 18412096
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Olfactory and chemosomatosensory function in pregnant women assessed with event-related potentials.
    Olofsson JK; Broman DA; Wulff M; Martinkauppi M; Nordin S
    Physiol Behav; 2005 Sep; 86(1-2):252-7. PubMed ID: 16112693
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pepper with and without a sting: Brain processing of intranasal trigeminal and olfactory stimuli from the same source.
    Han P; Mann S; Raue C; Warr J; Hummel T
    Brain Res; 2018 Dec; 1700():41-46. PubMed ID: 30006292
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dissociated representations of pleasant and unpleasant olfacto-trigeminal mixtures: an FMRI study.
    Bensafi M; Iannilli E; Poncelet J; Seo HS; Gerber J; Rouby C; Hummel T
    PLoS One; 2012; 7(6):e38358. PubMed ID: 22701631
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Habitual Exposure to Trigeminal Stimuli and Its Effects on the Processing of Chemosensory Stimuli.
    Joshi A; Thaploo D; Yan X; Zang Y; Warr J; Hummel T
    Neuroscience; 2021 Aug; 470():70-77. PubMed ID: 34274425
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activation of olfactory and trigeminal cortical areas following stimulation of the nasal mucosa with low concentrations of S(-)-nicotine vapor--an fMRI study on chemosensory perception.
    Albrecht J; Kopietz R; Linn J; Sakar V; Anzinger A; Schreder T; Pollatos O; Brückmann H; Kobal G; Wiesmann M
    Hum Brain Mapp; 2009 Mar; 30(3):699-710. PubMed ID: 18381635
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct transport of VEGF from the nasal cavity to brain.
    Yang JP; Liu HJ; Cheng SM; Wang ZL; Cheng X; Yu HX; Liu XF
    Neurosci Lett; 2009 Jan; 449(2):108-11. PubMed ID: 18996442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.