These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
425 related articles for article (PubMed ID: 19686341)
1. Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Endo A; Nakamura T; Shima J FEMS Microbiol Lett; 2009 Oct; 299(1):95-9. PubMed ID: 19686341 [TBL] [Abstract][Full Text] [Related]
2. Changes and roles of membrane compositions in the adaptation of Saccharomyces cerevisiae to ethanol. Wang Y; Zhang S; Liu H; Zhang L; Yi C; Li H J Basic Microbiol; 2015 Dec; 55(12):1417-26. PubMed ID: 26265555 [TBL] [Abstract][Full Text] [Related]
3. Novel strategy to improve vanillin tolerance and ethanol fermentation performances of Saccharomycere cerevisiae strains. Zheng DQ; Jin XN; Zhang K; Fang YH; Wu XC Bioresour Technol; 2017 May; 231():53-58. PubMed ID: 28192726 [TBL] [Abstract][Full Text] [Related]
4. [Effect of over-expression of sterol C-22 desaturase on ergosterol production in yeast strains]. Cai PL; He XP; Liu N; Zhang BR Wei Sheng Wu Xue Bao; 2007 Apr; 47(2):274-9. PubMed ID: 17552234 [TBL] [Abstract][Full Text] [Related]
5. A hap1 mutation in a laboratory strain of Saccharomyces cerevisiae results in decreased expression of ergosterol-related genes and cellular ergosterol content compared to sake yeast. Tamura K; Gu Y; Wang Q; Yamada T; Ito K; Shimoi H J Biosci Bioeng; 2004; 98(3):159-66. PubMed ID: 16233684 [TBL] [Abstract][Full Text] [Related]
6. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance. Yang J; Bae JY; Lee YM; Kwon H; Moon HY; Kang HA; Yee SB; Kim W; Choi W Biotechnol Bioeng; 2011 Aug; 108(8):1776-87. PubMed ID: 21437883 [TBL] [Abstract][Full Text] [Related]
7. Genomic reconstruction to improve bioethanol and ergosterol production of industrial yeast Saccharomyces cerevisiae. Zhang K; Tong M; Gao K; Di Y; Wang P; Zhang C; Wu X; Zheng D J Ind Microbiol Biotechnol; 2015 Feb; 42(2):207-18. PubMed ID: 25475753 [TBL] [Abstract][Full Text] [Related]
8. Increased ethanol production from glycerol by Saccharomyces cerevisiae strains with enhanced stress tolerance from the overexpression of SAGA complex components. Yu KO; Jung J; Ramzi AB; Choe SH; Kim SW; Park C; Han SO Enzyme Microb Technol; 2012 Sep; 51(4):237-43. PubMed ID: 22883559 [TBL] [Abstract][Full Text] [Related]
9. Improvement of Saccharomyces cerevisiae strain tolerance to vanillin through heavy ion radiation combined with adaptive laboratory evolution. Jia C; Chai R; Zhang M; Guo X; Zhou X; Ding N; Lei C; Dong Z; Zhao J; Ren H; Lu D J Biotechnol; 2024 Nov; 394():112-124. PubMed ID: 39197754 [TBL] [Abstract][Full Text] [Related]
10. Effects of culture conditions on ergosterol biosynthesis by Saccharomyces cerevisiae. Shobayashi M; Mitsueda S; Ago M; Fujii T; Iwashita K; Iefuji H Biosci Biotechnol Biochem; 2005 Dec; 69(12):2381-8. PubMed ID: 16377897 [TBL] [Abstract][Full Text] [Related]
11. Identification and functional evaluation of the reductases and dehydrogenases from Saccharomyces cerevisiae involved in vanillin resistance. Wang X; Liang Z; Hou J; Bao X; Shen Y BMC Biotechnol; 2016 Apr; 16():31. PubMed ID: 27036139 [TBL] [Abstract][Full Text] [Related]
12. Ergosterol production from molasses by genetically modified Saccharomyces cerevisiae. He X; Guo X; Liu N; Zhang B Appl Microbiol Biotechnol; 2007 May; 75(1):55-60. PubMed ID: 17225097 [TBL] [Abstract][Full Text] [Related]
13. Monitoring yeast physiology during very high gravity wort fermentations by frequent analysis of gene expression. Rautio JJ; Huuskonen A; Vuokko H; Vidgren V; Londesborough J Yeast; 2007 Sep; 24(9):741-60. PubMed ID: 17605133 [TBL] [Abstract][Full Text] [Related]
14. Identification of RCN1 and RSA3 as ethanol-tolerant genes in Saccharomyces cerevisiae using a high copy barcoded library. Anderson MJ; Barker SL; Boone C; Measday V FEMS Yeast Res; 2012 Feb; 12(1):48-60. PubMed ID: 22093065 [TBL] [Abstract][Full Text] [Related]
15. Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae. Hou L Appl Biochem Biotechnol; 2010 Feb; 160(4):1084-93. PubMed ID: 19214789 [TBL] [Abstract][Full Text] [Related]
16. Importance of glucose-6-phosphate dehydrogenase (G6PDH) for vanillin tolerance in Saccharomyces cerevisiae. Nguyen TT; Kitajima S; Izawa S J Biosci Bioeng; 2014 Sep; 118(3):263-9. PubMed ID: 24725964 [TBL] [Abstract][Full Text] [Related]
17. Enhanced resistance of Saccharomyces cerevisiae to vanillin by expression of lacA from Trametes sp. AH28-2. Ji L; Shen Y; Xu L; Peng B; Xiao Y; Bao X Bioresour Technol; 2011 Sep; 102(17):8105-9. PubMed ID: 21727001 [TBL] [Abstract][Full Text] [Related]
18. Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray. Hirasawa T; Nakakura Y; Yoshikawa K; Ashitani K; Nagahisa K; Furusawa C; Katakura Y; Shimizu H; Shioya S Appl Microbiol Biotechnol; 2006 Apr; 70(3):346-57. PubMed ID: 16283296 [TBL] [Abstract][Full Text] [Related]
19. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Ma M; Liu ZL Appl Microbiol Biotechnol; 2010 Jul; 87(3):829-45. PubMed ID: 20464391 [TBL] [Abstract][Full Text] [Related]
20. [Regulation role of sterol C-24 methyltransferase and sterol C-8 isomerase in the ergosterol biosynthesis of Saccharomyces cerevisiae]. Zhang Z; He X; Li W; Lu Y; Wang Z; Zhang B Wei Sheng Wu Xue Bao; 2009 Aug; 49(8):1063-8. PubMed ID: 19835168 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]