BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 19686370)

  • 1. Pollen tube growth: a delicate equilibrium between secretory and endocytic pathways.
    Moscatelli A; Idilli AI
    J Integr Plant Biol; 2009 Aug; 51(8):727-39. PubMed ID: 19686370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vesicle trafficking dynamics and visualization of zones of exocytosis and endocytosis in tobacco pollen tubes.
    Zonia L; Munnik T
    J Exp Bot; 2008; 59(4):861-73. PubMed ID: 18304978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rates of exocytosis and endocytosis in Arabidopsis root hairs and pollen tubes.
    Ketelaar T; Galway ME; Mulder BM; Emons AM
    J Microsc; 2008 Aug; 231(2):265-73. PubMed ID: 18778424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model of plasma membrane flow and cytosis regulation in growing pollen tubes.
    Chavarría-Krauser A; Yejie D
    J Theor Biol; 2011 Sep; 285(1):10-24. PubMed ID: 21703278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microtubule depolymerization affects endocytosis and exocytosis in the tip and influences endosome movement in tobacco pollen tubes.
    Idilli AI; Morandini P; Onelli E; Rodighiero S; Caccianiga M; Moscatelli A
    Mol Plant; 2013 Jul; 6(4):1109-30. PubMed ID: 23770840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncovering hidden treasures in pollen tube growth mechanics.
    Zonia L; Munnik T
    Trends Plant Sci; 2009 Jun; 14(6):318-27. PubMed ID: 19446491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes.
    Samaj J; Müller J; Beck M; Böhm N; Menzel D
    Trends Plant Sci; 2006 Dec; 11(12):594-600. PubMed ID: 17092761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins.
    Röckel N; Wolf S; Kost B; Rausch T; Greiner S
    Plant J; 2008 Jan; 53(1):133-43. PubMed ID: 17971035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct endocytic pathways identified in tobacco pollen tubes using charged nanogold.
    Moscatelli A; Ciampolini F; Rodighiero S; Onelli E; Cresti M; Santo N; Idilli A
    J Cell Sci; 2007 Nov; 120(Pt 21):3804-19. PubMed ID: 17940063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vacuolar sorting receptors (VSRs) and secretory carrier membrane proteins (SCAMPs) are essential for pollen tube growth.
    Wang H; Tse YC; Law AH; Sun SS; Sun YB; Xu ZF; Hillmer S; Robinson DG; Jiang L
    Plant J; 2010 Mar; 61(5):826-38. PubMed ID: 20030753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apical F-actin-regulated exocytic targeting of NtPPME1 is essential for construction and rigidity of the pollen tube cell wall.
    Wang H; Zhuang X; Cai Y; Cheung AY; Jiang L
    Plant J; 2013 Nov; 76(3):367-79. PubMed ID: 23906068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional compartmentalization in pollen tubes.
    Cheung AY; Wu HM
    J Exp Bot; 2007; 58(1):75-82. PubMed ID: 16980593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamics and cell volume oscillations in the pollen tube apical region are integral components of the biomechanics of Nicotiana tabacum pollen tube growth.
    Zonia L; Müller M; Munnik T
    Cell Biochem Biophys; 2006; 46(3):209-32. PubMed ID: 17272849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pollen-pistil interactions and the endomembrane system.
    Kumar A; McClure B
    J Exp Bot; 2010 Apr; 61(7):2001-13. PubMed ID: 20363870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrative proteomic and cytological analysis of the effects of extracellular Ca(2+) influx on Pinus bungeana pollen tube development.
    Wu X; Chen T; Zheng M; Chen Y; Teng N; Samaj J; Baluska F; Lin J
    J Proteome Res; 2008 Oct; 7(10):4299-312. PubMed ID: 18715029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatiotemporal organization and correlation of tip-focused exocytosis and endocytosis in regulating pollen tube tip growth.
    Weng X; Shen Y; Jiang L; Zhao L; Wang H
    Plant Sci; 2023 May; 330():111633. PubMed ID: 36775070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial and temporal integration of signalling networks regulating pollen tube growth.
    Zonia L
    J Exp Bot; 2010 Apr; 61(7):1939-57. PubMed ID: 20378665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pollen tubes exhibit regular periodic membrane trafficking events in the absence of apical extension.
    Parton RM; Fischer-Parton S; Trewavas AJ; Watahiki MK
    J Cell Sci; 2003 Jul; 116(Pt 13):2707-19. PubMed ID: 12746485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tip-localized calcium entry fluctuates during pollen tube growth.
    Pierson ES; Miller DD; Callaham DA; van Aken J; Hackett G; Hepler PK
    Dev Biol; 1996 Feb; 174(1):160-73. PubMed ID: 8626016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of actin polymerisation by low concentration Latrunculin B affects endocytosis and alters exocytosis in shank and tip of tobacco pollen tubes.
    Moscatelli A; Idilli AI; Rodighiero S; Caccianiga M
    Plant Biol (Stuttg); 2012 Sep; 14(5):770-82. PubMed ID: 22288466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.