BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 19686709)

  • 1. Corpus callosum has different channels for transmission of spatial frequency information.
    Kalaycioğlu C; Nalçaci E; Schmiedt-Fehr C; Başar-Eroğlu C
    Brain Res; 2009 Nov; 1296():85-93. PubMed ID: 19686709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interhemispheric transfer of visual information in humans: the role of different callosal channels.
    Ipata A; Girelli M; Miniussi C; Marzi CA
    Arch Ital Biol; 1997 Mar; 135(2):169-82. PubMed ID: 9101027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-frequency analysis of visual evoked potentials for interhemispheric transfer time and proportion in callosal fibers of different diameters.
    Ulusoy I; Halici U; Nalçaci E; Anaç I; Leblebicio Eroğlu K; Başar-Eroğlu C
    Biol Cybern; 2004 Apr; 90(4):291-301. PubMed ID: 15085348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Individual differences in interhemispheric transfer time (IHTT) as measured by event related potentials.
    Moes PE; Brown WS; Minnema MT
    Neuropsychologia; 2007 Jun; 45(11):2626-30. PubMed ID: 17499316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The unusual symmetry of musicians: musicians have equilateral interhemispheric transfer for visual information.
    Patston LL; Kirk IJ; Rolfe MH; Corballis MC; Tippett LJ
    Neuropsychologia; 2007 May; 45(9):2059-65. PubMed ID: 17374388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inter- and intra-hemispheric processing of visual event-related potentials in the absence of the corpus callosum.
    Bayard S; Gosselin N; Robert M; Lassonde M
    J Cogn Neurosci; 2004 Apr; 16(3):401-14. PubMed ID: 15072676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual evoked potential interhemispheric transfer time in different frequency bands.
    Nalcaci E; Basar-Eroglu C; Stadler M
    Clin Neurophysiol; 1999 Jan; 110(1):71-81. PubMed ID: 10348323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A coded VEP method to measure interhemispheric transfer time (IHTT).
    Li Y; Bin G; Hong B; Gao X
    Neurosci Lett; 2010 Mar; 472(2):123-7. PubMed ID: 20138118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interhemispheric transfer time and structural properties of the corpus callosum.
    Westerhausen R; Kreuder F; Woerner W; Huster RJ; Smit CM; Schweiger E; Wittling W
    Neurosci Lett; 2006 Dec; 409(2):140-5. PubMed ID: 17034948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speeded right-to-left information transfer: the result of speeded transmission in right-hemisphere axons?
    Barnett KJ; Corballis MC
    Neurosci Lett; 2005 May 20-27; 380(1-2):88-92. PubMed ID: 15854757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sex differences in callosal transfer and hemispheric specialization for face coding.
    Proverbio AM; Mazzara R; Riva F; Manfredi M
    Neuropsychologia; 2012 Jul; 50(9):2325-32. PubMed ID: 22727879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural mechanisms of global/local processing of bilateral visual inputs: an ERP study.
    Jiang Y; Han S
    Clin Neurophysiol; 2005 Jun; 116(6):1444-54. PubMed ID: 15978507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Interhemispheric transmission of visual information: behavioral and electrophysiologic aspects].
    Fedan VA; Galogazha MM; Liubimoĭ NN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1985; 35(4):678-86. PubMed ID: 4050108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lack of asymmetrical transfer for linguistic stimuli in schizophrenia: an ERP study.
    Barnett KJ; Kirk IJ
    Clin Neurophysiol; 2005 May; 116(5):1019-27. PubMed ID: 15826841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemispheric specialization of human inferior temporal cortex during coarse-to-fine and fine-to-coarse analysis of natural visual scenes.
    Peyrin C; Schwartz S; Seghier M; Michel C; Landis T; Vuilleumier P
    Neuroimage; 2005 Nov; 28(2):464-73. PubMed ID: 15993630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interhemispheric integration at different spatial scales: the evidence from EEG coherence and FMRI.
    Knyazeva MG; Fornari E; Meuli R; Maeder P
    J Neurophysiol; 2006 Jul; 96(1):259-75. PubMed ID: 16571734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcallosal inhibition dampens neural responses to high contrast stimuli in human visual cortex.
    Bocci T; Caleo M; Giorli E; Barloscio D; Maffei L; Rossi S; Sartucci F
    Neuroscience; 2011 Jul; 187():43-51. PubMed ID: 21557988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attention and interhemispheric transfer: a behavioral and fMRI study.
    Weber B; Treyer V; Oberholzer N; Jaermann T; Boesiger P; Brugger P; Regard M; Buck A; Savazzi S; Marzi CA
    J Cogn Neurosci; 2005 Jan; 17(1):113-23. PubMed ID: 15701243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interhemispheric transfer and integration of imagined visual stimuli.
    Savazzi S; Mancini F; Marzi CA
    Neuropsychologia; 2008 Feb; 46(3):803-9. PubMed ID: 17920086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemisphere asymmetry of the visually evoked potentials elicited by gratings of varying spatial frequency.
    Vassilev A; Manahilov V; Mitov D; Nevskaya AA; Leushina LI
    Acta Physiol Pharmacol Bulg; 1991; 17(2-3):54-60. PubMed ID: 1819918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.