BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 19686754)

  • 1. First insight into the lipid uptake, storage and mobilization in arachnids: role of midgut diverticula and lipoproteins.
    Laino A; Cunningham ML; García F; Heras H
    J Insect Physiol; 2009 Dec; 55(12):1118-24. PubMed ID: 19686754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro lipid transfer between lipoproteins and midgut-diverticula in the spider Polybetes pythagoricus.
    Laino A; Cunningham ML; Heras H; Garcia F
    Comp Biochem Physiol B Biochem Mol Biol; 2011 Dec; 160(4):181-6. PubMed ID: 21889600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arachnid lipoproteins: comparative aspects.
    Cunningham M; Garcia F; Pollero RJ
    Comp Biochem Physiol C Toxicol Pharmacol; 2007; 146(1-2):79-87. PubMed ID: 16887396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid uptake by insect oocytes.
    Ziegler R; Van Antwerpen R
    Insect Biochem Mol Biol; 2006 Apr; 36(4):264-72. PubMed ID: 16551540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. β-chain of ATP synthase as a lipophorin binding protein and its role in lipid transfer in the midgut of Panstrongylus megistus (Hemiptera: Reduviidae).
    Fruttero LL; Demartini DR; Rubiolo ER; Carlini CR; Canavoso LE
    Insect Biochem Mol Biol; 2014 Sep; 52():1-12. PubMed ID: 24952172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The major insect lipoprotein is a lipid source to mosquito stages of malaria parasite.
    Atella GC; Bittencourt-Cunha PR; Nunes RD; Shahabuddin M; Silva-Neto MA
    Acta Trop; 2009 Feb; 109(2):159-62. PubMed ID: 19013123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of termite lipophorin and its involvement in hydrocarbon transport.
    Fan Y; Schal C; Vargo EL; Bagnères AG
    J Insect Physiol; 2004 Jul; 50(7):609-20. PubMed ID: 15234621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Biochemistry of the developmental cycle of Triatoma infestans (Vinchuca). VI. Identification and lipid composition of hemolymph lipoproteins of adult males].
    Fichera LE; Brenner RR
    Acta Physiol Lat Am; 1982; 32(1):21-9. PubMed ID: 6760669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer of phospholipids from fat body to lipophorin in Rhodnius prolixus.
    Atella GC; Gondim KC; Masuda H
    Arch Insect Biochem Physiol; 1992; 19(2):133-44. PubMed ID: 11488301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Biochemistry of the development cycle of Triatoma infestans (vinchuca). X. Hemolymph lipoproteins of females].
    Fichera LE; Brenner RR
    Acta Physiol Pharmacol Latinoam; 1986; 36(3):265-75. PubMed ID: 3554896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipophorin density variation during oogenesis on Rhodnius prolixus.
    Coelho HS; Atella GC; Moreira MF; Gondim KC; Masuda H
    Arch Insect Biochem Physiol; 1997; 35(3):301-13. PubMed ID: 9177134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatty acid incorporation by Rhodnius prolixus midgut.
    Atella GC; Arruda MA; Masuda H; Gondim KC
    Arch Insect Biochem Physiol; 2000 Mar; 43(3):99-107. PubMed ID: 10685097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Pandinus imperator haemolymph lipoprotein, an unusual phosphatidylserine carrying lipoprotein.
    Schenk S; Gras H; Marksteiner D; Patasic L; Prommnitz B; Hoeger U
    Insect Biochem Mol Biol; 2009 Oct; 39(10):735-44. PubMed ID: 19729064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delipidation of insect lipoprotein, lipophorin, affects its binding to the lipophorin receptor, LpR: implications for the role of LpR-mediated endocytosis.
    Roosendaal SD; Van Doorn JM; Valentijn KM; Van der Horst DJ; Rodenburg KW
    Insect Biochem Mol Biol; 2009 Feb; 39(2):135-44. PubMed ID: 19049873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of the haemolymph lipoproteins of Triatoma infestans.
    Fichera LE; Brenner RR
    Comp Biochem Physiol B; 1982; 72(1):71-5. PubMed ID: 7049559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of lipids in insects.
    Gilbert LI; Chino H
    J Lipid Res; 1974 Sep; 15(5):439-56. PubMed ID: 4370522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steroid hormone 20-hydroxyecdysone regulation of the very-high-density lipoprotein (VHDL) receptor phosphorylation for VHDL uptake.
    Dong DJ; Liu W; Cai MJ; Wang JX; Zhao XF
    Insect Biochem Mol Biol; 2013 Apr; 43(4):328-35. PubMed ID: 23416133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid metabolism in Rhodnius prolixus (Hemiptera: Reduviidae): role of a midgut triacylglycerol-lipase.
    Grillo LA; Majerowicz D; Gondim KC
    Insect Biochem Mol Biol; 2007 Jun; 37(6):579-88. PubMed ID: 17517335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The storage of nutritional resources during vitellogenesis of Panstrongylus megistus (Hemiptera: Reduviidae): the pathways of lipophorin in lipid delivery to developing oocytes.
    Fruttero LL; Frede S; Rubiolo ER; Canavoso LE
    J Insect Physiol; 2011 Apr; 57(4):475-86. PubMed ID: 21277855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and characterization of two vitellins from eggs of the spider Polybetes pythagoricus (Araneae: Sparassidae).
    Laino A; Cunningham ML; Heras H; Garcia F
    Comp Biochem Physiol B Biochem Mol Biol; 2011 Feb; 158(2):142-8. PubMed ID: 21056682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.