These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 19686754)

  • 21. Changes in the midgut diverticula in the harvestmen Amilenus aurantiacus (Phalangiidae, Opiliones) during winter diapause.
    Lipovšek S; Novak T; Janžekovič F; Leitinger G
    Arthropod Struct Dev; 2015 Mar; 44(2):131-41. PubMed ID: 25546311
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamics of lipid accumulation by the fat body of Rhodnius prolixus: the involvement of lipophorin binding sites.
    Pontes EG; Leite P; Majerowicz D; Atella GC; Gondim KC
    J Insect Physiol; 2008 May; 54(5):790-7. PubMed ID: 18395740
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lipoproteins of the egg perivitelline fluid of Pomacea canaliculata snails (Mollusca: Gastropoda).
    Garin CF; Heras H; Pollero RJ
    J Exp Zool; 1996 Dec; 276(5):307-14. PubMed ID: 8972583
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic pathways for dietary lipids in the midgut of hematophagous Panstrongylus megistus (Hemiptera: Reduviidae).
    Canavoso LE; Frede S; Rubiolo ER
    Insect Biochem Mol Biol; 2004 Aug; 34(8):845-54. PubMed ID: 15262288
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lipid binding capacity of spider hemocyanin.
    Cunningham M; Gómez C; Pollero R
    J Exp Zool; 1999 Sep; 284(4):368-73. PubMed ID: 10451413
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lipophorin interaction with the midgut of Rhodnius prolixus: characterization and changes in binding capacity.
    Grillo LA; Pontes EG; Gondim KC
    Insect Biochem Mol Biol; 2003 Apr; 33(4):429-38. PubMed ID: 12650691
    [TBL] [Abstract][Full Text] [Related]  

  • 27. VHDL, a larval storage protein from the corn earworm, Helicoverpa zea, is a member of the vitellogenin gene family.
    Sum H; Haunerland NH
    Insect Biochem Mol Biol; 2007 Oct; 37(10):1086-93. PubMed ID: 17785196
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insect hemolymph lipophorin: a mechanism of lipid transport in insects.
    Chino H; Downer RG
    Adv Biophys; 1982; 15():67-92. PubMed ID: 7102456
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biochemistry of the evolution of Triatoma infestans. XII. Biosynthesis and secretion of a very high density lipoprotein.
    Rimoldi OJ; González MS; Brenner RR
    Acta Physiol Pharmacol Ther Latinoam; 1997; 47(2):77-86. PubMed ID: 9339237
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rhodnius prolixus lipophorin: lipid composition and effect of high temperature on physiological role.
    Majerowicz D; Cezimbra MP; Alves-Bezerra M; Entringer PF; Atella GC; Sola-Penna M; Meyer-Fernandes JR; Gondim KC
    Arch Insect Biochem Physiol; 2013 Mar; 82(3):129-40. PubMed ID: 23361613
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Loading of lipophorin particles with phospholipids at the midgut of Rhodnius prolixus.
    Atella GC; Gondim C; Masuda H
    Arch Insect Biochem Physiol; 1995; 30(2-3):337-50. PubMed ID: 11488302
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Absorption and tissue distribution of cholesterol in Manduca sexta.
    Jouni ZE; Zamora J; Wells MA
    Arch Insect Biochem Physiol; 2002 Mar; 49(3):167-75. PubMed ID: 11857677
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of lipid and fatty acid composition of three species of scorpions with relation to different organs.
    Laino A; Mattoni C; Ojanguren-Affilastro A; Cunningham M; Fernando Garcia C
    Comp Biochem Physiol B Biochem Mol Biol; 2015 Dec; 190():27-36. PubMed ID: 26303276
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lipids in the heart: a source of fuel and a source of toxins.
    Park TS; Yamashita H; Blaner WS; Goldberg IJ
    Curr Opin Lipidol; 2007 Jun; 18(3):277-82. PubMed ID: 17495601
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lipid storage and mobilization in insects: current status and future directions.
    Arrese EL; Canavoso LE; Jouni ZE; Pennington JE; Tsuchida K; Wells MA
    Insect Biochem Mol Biol; 2001 Jan; 31(1):7-17. PubMed ID: 11102830
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The process of lipid storage in insect oocytes: The involvement of β-chain of ATP synthase in lipophorin-mediated lipid transfer in the chagas' disease vector Panstrongylus megistus (Hemiptera: Reduviidae).
    Fruttero LL; Leyria J; Ramos FO; Stariolo R; Settembrini BP; Canavoso LE
    J Insect Physiol; 2017 Jan; 96():82-92. PubMed ID: 27983943
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biochemical and cellular characterization of lipophorin-midgut interaction in the hematophagous Panstrongylus megistus (Hemiptera: Reduviidae).
    Fruttero LL; Rubiolo ER; Canavoso LE
    Insect Biochem Mol Biol; 2009; 39(5-6):322-31. PubMed ID: 19507302
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lipophorin acts as a shuttle of lipids to the milk gland during tsetse fly pregnancy.
    Benoit JB; Yang G; Krause TB; Patrick KR; Aksoy S; Attardo GM
    J Insect Physiol; 2011 Nov; 57(11):1553-61. PubMed ID: 21875592
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fat metabolism in insects.
    Canavoso LE; Jouni ZE; Karnas KJ; Pennington JE; Wells MA
    Annu Rev Nutr; 2001; 21():23-46. PubMed ID: 11375428
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Fat Body of the Hematophagous Insect, Panstrongylus megistus (Hemiptera: Reduviidae): Histological Features and Participation of the β-Chain of ATP Synthase in the Lipophorin-Mediated Lipid Transfer.
    Fruttero LL; Leyria J; Moyetta NR; Ramos FO; Settembrini BP; Canavoso LE
    J Insect Sci; 2019 Jul; 19(4):. PubMed ID: 31346627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.