BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1090 related articles for article (PubMed ID: 19686825)

  • 1. A new formulation for orally disintegrating tablets using a suspension spray-coating method.
    Okuda Y; Irisawa Y; Okimoto K; Osawa T; Yamashita S
    Int J Pharm; 2009 Dec; 382(1-2):80-7. PubMed ID: 19686825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Further improvement of orally disintegrating tablets using micronized ethylcellulose.
    Okuda Y; Irisawa Y; Okimoto K; Osawa T; Yamashita S
    Int J Pharm; 2012 Feb; 423(2):351-9. PubMed ID: 22138608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of face centred central composite design to optimise compression force and tablet diameter for the formulation of mechanically strong and fast disintegrating orodispersible tablets.
    Pabari RM; Ramtoola Z
    Int J Pharm; 2012 Jul; 430(1-2):18-25. PubMed ID: 22465631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of starch 1500 as a binder and disintegrant in lamivudine tablets prepared by high shear wet granulation.
    Rahman BM; Ibne-Wahed MI; Khondkar P; Ahmed M; Islam R; Barman RK; Islam MA
    Pak J Pharm Sci; 2008 Oct; 21(4):455-9. PubMed ID: 18930870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pragmatic approach for engineering porous mannitol and mechanistic evaluation of particle performance.
    Al-Khattawi A; Koner J; Rue P; Kirby D; Perrie Y; Rajabi-Siahboomi A; Mohammed AR
    Eur J Pharm Biopharm; 2015 Aug; 94():1-10. PubMed ID: 25960332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and evaluation of swelling induced-orally disintegrating tablets by microwave irradiation.
    Sano S; Iwao Y; Kimura S; Itai S
    Int J Pharm; 2011 Sep; 416(1):252-9. PubMed ID: 21763765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of disintegrants on the properties of multiparticulate tablets comprising starch pellets and excipient granules.
    Mehta S; De Beer T; Remon JP; Vervaet C
    Int J Pharm; 2012 Jan; 422(1-2):310-7. PubMed ID: 22101283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of coprocessed disintegrants produced from tapioca starch and mannitol in orally disintegrating paracetamol tablet.
    Adeoye O; Alebiowu G
    Acta Pol Pharm; 2014; 71(5):803-11. PubMed ID: 25362809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-vitro and in-vivo evaluation of enteric-coated starch-based pellets prepared via extrusion/spheronisation.
    Dukić-Ott A; De Beer T; Remon JP; Baeyens W; Foreman P; Vervaet C
    Eur J Pharm Biopharm; 2008 Sep; 70(1):302-12. PubMed ID: 18579353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The preparation of orally disintegrating tablets using a hydrophilic waxy binder.
    Abdelbary G; Prinderre P; Eouani C; Joachim J; Reynier JP; Piccerelle P
    Int J Pharm; 2004 Jul; 278(2):423-33. PubMed ID: 15196646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PREPARATION AND CHARACTERIZATION OF ORALLY DISINTEGRATING LORATADINE TABLETS MANUFACTURED WITH CO-PROCESSED MIXTURES.
    Amelian A; Szekalska M; Wilczewska AZ; Basa A; Winnicka K
    Acta Pol Pharm; 2016; 73(2):453-60. PubMed ID: 27180438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new apparatus for real-time assessment of the particle size distribution of disintegrating tablets.
    Quodbach J; Kleinebudde P
    J Pharm Sci; 2014 Nov; 103(11):3657-3665. PubMed ID: 25223505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formulation study for orally disintegrating tablet using partly pregelatinized starch binder.
    Mimura K; Kanada K; Uchida S; Yamada M; Namiki N
    Chem Pharm Bull (Tokyo); 2011; 59(8):959-64. PubMed ID: 21804239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and evaluation of microwave-treated orally disintegrating tablets containing polymeric disintegrant and mannitol.
    Sano S; Iwao Y; Noguchi S; Kimura S; Itai S
    Int J Pharm; 2013 May; 448(1):132-41. PubMed ID: 23524122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of general multilevel factorial design with formulation of fast disintegrating tablets containing croscaremellose sodium and Disintequick MCC-25.
    Solaiman A; Suliman AS; Shinde S; Naz S; Elkordy AA
    Int J Pharm; 2016 Mar; 501(1-2):87-95. PubMed ID: 26827922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of chitosan as a disintegrant on the bioavailability of furosemide tablets: in vitro evaluation and in vivo simulation of novel formulations.
    Rasool BK; Fahmy SA; Galeel OW
    Pak J Pharm Sci; 2012 Oct; 25(4):815-22. PubMed ID: 23009999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formulation and evaluation of Cetirizine dihydrochloride orodispersible tablet.
    Subramanian S; Sankar V; Manakadan AA; Ismail S; Andhuvan G
    Pak J Pharm Sci; 2010 Apr; 23(2):232-5. PubMed ID: 20363705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of the combinative particle size reduction technology H 42 to produce fast dissolving glibenclamide tablets.
    Salazar J; Müller RH; Möschwitzer JP
    Eur J Pharm Sci; 2013 Jul; 49(4):565-77. PubMed ID: 23587645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Prosolv and Prosolv:Mannitol 200 direct compression fillers on the physicomechanical properties of atorvastatin oral dispersible tablets.
    Gowda V; Pabari RM; Kelly JG; Ramtoola Z
    Pharm Dev Technol; 2015 Jun; 20(4):394-400. PubMed ID: 24397821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of disintegration-promoting agent, lubricants and moisture treatment on optimized fast disintegrating tablets.
    Late SG; Yu YY; Banga AK
    Int J Pharm; 2009 Jan; 365(1-2):4-11. PubMed ID: 18778759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 55.