BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 19687096)

  • 1. A CD26-controlled cell surface cascade for regulation of T cell motility and chemokine signals.
    Liu Z; Christensson M; Forslöw A; De Meester I; Sundqvist KG
    J Immunol; 2009 Sep; 183(6):3616-24. PubMed ID: 19687096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of CD26/DPP IV in chemokine processing.
    Van Damme J; Struyf S; Wuyts A; Van Coillie E; Menten P; Schols D; Sozzani S; De Meester I; Proost P
    Chem Immunol; 1999; 72():42-56. PubMed ID: 10550929
    [No Abstract]   [Full Text] [Related]  

  • 3. Structural requirements for catalysis, expression, and dimerization in the CD26/DPIV gene family.
    Ajami K; Abbott CA; Obradovic M; Gysbers V; Kähne T; McCaughan GW; Gorrell MD
    Biochemistry; 2003 Jan; 42(3):694-701. PubMed ID: 12534281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemokines in hematopoiesis.
    Broxmeyer HE
    Curr Opin Hematol; 2008 Jan; 15(1):49-58. PubMed ID: 18043246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antigen-induced regulation of T-cell motility, interaction with antigen-presenting cells and activation through endogenous thrombospondin-1 and its receptors.
    Bergström SE; Uzunel M; Talme T; Bergdahl E; Sundqvist KG
    Immunology; 2015 Apr; 144(4):687-703. PubMed ID: 25393517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thymocyte selection: chemokine signaling is not only about the destination.
    Gleimer M; von Boehmer H
    Curr Biol; 2010 Apr; 20(7):R316-8. PubMed ID: 20392421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisiting an old acquaintance: CD26 and its molecular mechanisms in T cell function.
    Ohnuma K; Dang NH; Morimoto C
    Trends Immunol; 2008 Jun; 29(6):295-301. PubMed ID: 18456553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino-terminal truncation of chemokines by CD26/dipeptidyl-peptidase IV. Conversion of RANTES into a potent inhibitor of monocyte chemotaxis and HIV-1-infection.
    Proost P; De Meester I; Schols D; Struyf S; Lambeir AM; Wuyts A; Opdenakker G; De Clercq E; Scharpé S; Van Damme J
    J Biol Chem; 1998 Mar; 273(13):7222-7. PubMed ID: 9516414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CD26/dipeptidyl peptidase IV differentially regulates the chemotaxis of T cells and monocytes toward RANTES: possible mechanism for the switch from innate to acquired immune response.
    Iwata S; Yamaguchi N; Munakata Y; Ikushima H; Lee JF; Hosono O; Schlossman SF; Morimoto C
    Int Immunol; 1999 Mar; 11(3):417-26. PubMed ID: 10221653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maltose binding protein facilitates high-level expression and functional purification of the chemokines RANTES and SDF-1alpha from Escherichia coli.
    Cho HJ; Lee Y; Chang RS; Hahm MS; Kim MK; Kim YB; Oh YK
    Protein Expr Purif; 2008 Jul; 60(1):37-45. PubMed ID: 18455434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cytokine-controlled mechanism for integrated regulation of T-lymphocyte motility, adhesion and activation.
    Bergström SE; Bergdahl E; Sundqvist KG
    Immunology; 2013 Dec; 140(4):441-55. PubMed ID: 23866045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino-terminal processing of MIP-1beta/CCL4 by CD26/dipeptidyl-peptidase IV.
    Guan E; Wang J; Norcross MA
    J Cell Biochem; 2004 May; 92(1):53-64. PubMed ID: 15095403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple pathways of amino terminal processing produce two truncated variants of RANTES/CCL5.
    Lim JK; Burns JM; Lu W; DeVico AL
    J Leukoc Biol; 2005 Aug; 78(2):442-52. PubMed ID: 15923218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemokines: multiple levels of leukocyte migration control.
    Moser B; Wolf M; Walz A; Loetscher P
    Trends Immunol; 2004 Feb; 25(2):75-84. PubMed ID: 15102366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of CXCL12 and CXCR4 expression by human brain endothelial cells and their role in CD4+ and CD8+ T cell adhesion and transendothelial migration.
    Liu KK; Dorovini-Zis K
    J Neuroimmunol; 2009 Oct; 215(1-2):49-64. PubMed ID: 19765831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibody-induced modulation of CD26 surface expression.
    Mattern T; Reich C; Duchrow M; Ansorge S; Ulmer AJ; Flad HD
    Immunology; 1995 Apr; 84(4):595-600. PubMed ID: 7790033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CD26/dipeptidylpeptidase IV-chemokine interactions: double-edged regulation of inflammation and tumor biology.
    Mortier A; Gouwy M; Van Damme J; Proost P; Struyf S
    J Leukoc Biol; 2016 Jun; 99(6):955-69. PubMed ID: 26744452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CD26: a novel treatment target for T-cell lymphoid malignancies? (Review).
    Sato K; Dang NH
    Int J Oncol; 2003 Mar; 22(3):481-97. PubMed ID: 12579300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Good or evil: CD26 and HIV infection.
    Ohtsuki T; Tsuda H; Morimoto C
    J Dermatol Sci; 2000 Apr; 22(3):152-60. PubMed ID: 10698152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bexarotene blunts malignant T-cell chemotaxis in Sezary syndrome: reduction of chemokine receptor 4-positive lymphocytes and decreased chemotaxis to thymus and activation-regulated chemokine.
    Richardson SK; Newton SB; Bach TL; Budgin JB; Benoit BM; Lin JH; Yoon JS; Wysocka M; Abrams CS; Rook AH
    Am J Hematol; 2007 Sep; 82(9):792-7. PubMed ID: 17546636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.