These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 19687541)

  • 21. Synthesis of Eu2O3 nanotube arrays through a facile sol-gel template approach.
    Wu G; Zhang L; Cheng B; Xie T; Yuan X
    J Am Chem Soc; 2004 May; 126(19):5976-7. PubMed ID: 15137757
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ordered SBA-15 nanorod arrays inside a porous alumina membrane.
    Lu Q; Gao F; Komarneni S; Mallouk TE
    J Am Chem Soc; 2004 Jul; 126(28):8650-1. PubMed ID: 15250707
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and growth mechanism of multilayer TiO2 nanotube arrays.
    Guan D; Wang Y
    Nanoscale; 2012 Apr; 4(9):2968-77. PubMed ID: 22460605
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Origin of the bottlenecks in preparing anodized aluminum oxide (AAO) templates on ITO glass.
    Foong TR; Sellinger A; Hu X
    ACS Nano; 2008 Nov; 2(11):2250-6. PubMed ID: 19206390
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation and characterization of self-organized TiO2 nanotube arrays by pulse anodization.
    Chanmanee W; Watcharenwong A; Chenthamarakshan CR; Kajitvichyanukul P; de Tacconi NR; Rajeshwar K
    J Am Chem Soc; 2008 Jan; 130(3):965-74. PubMed ID: 18163623
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-speed growth of TiO2 nanotube arrays with gradient pore diameter and ultrathin tube wall under high-field anodization.
    Yuan X; Zheng M; Ma L; Shen W
    Nanotechnology; 2010 Oct; 21(40):405302. PubMed ID: 20829566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ZnO@Co hybrid nanotube arrays growth from electrochemical deposition: structural, optical, photocatalytic and magnetic properties.
    Fan LY; Yu SH
    Phys Chem Chem Phys; 2009 May; 11(19):3710-7. PubMed ID: 19421482
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toward highly efficient CdS/CdSe quantum dots-sensitized solar cells incorporating ordered photoanodes on transparent conductive substrates.
    Zhang Q; Chen G; Yang Y; Shen X; Zhang Y; Li C; Yu R; Luo Y; Li D; Meng Q
    Phys Chem Chem Phys; 2012 May; 14(18):6479-86. PubMed ID: 22456892
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of Fe(2)O(3)/TiO(2) nanorod-nanotube arrays by filling TiO(2) nanotubes with Fe.
    Mohapatra SK; Banerjee S; Misra M
    Nanotechnology; 2008 Aug; 19(31):315601. PubMed ID: 21828788
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A freestanding membrane of highly ordered anodic ZrO2 nanotube arrays.
    Shin Y; Lee S
    Nanotechnology; 2009 Mar; 20(10):105301. PubMed ID: 19417516
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Template-based fabrication of SrTiO3 and BaTiO3 nanotubes.
    Chen YY; Yu BY; Wang JH; Cochran RE; Shyue JJ
    Inorg Chem; 2009 Jan; 48(2):681-6. PubMed ID: 19086907
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct probe of heterojunction effects upon photoconductive properties of TiO2 nanotubes fabricated by atomic layer deposition.
    Chang YH; Liu CM; Tseng YC; Chen C; Chen CC; Cheng HE
    Nanotechnology; 2010 Jun; 21(22):225602. PubMed ID: 20453279
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of aligned TiO2 one-dimensional nanostructured arrays using a one-step templating solution approach.
    Lee JH; Leu IC; Hsu MC; Chung YW; Hon MH
    J Phys Chem B; 2005 Jul; 109(27):13056-9. PubMed ID: 16852622
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays.
    Wolcott A; Smith WA; Kuykendall TR; Zhao Y; Zhang JZ
    Small; 2009 Jan; 5(1):104-11. PubMed ID: 19040214
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High carrier density and capacitance in TiO2 nanotube arrays induced by electrochemical doping.
    Fabregat-Santiago F; Barea EM; Bisquert J; Mor GK; Shankar K; Grimes CA
    J Am Chem Soc; 2008 Aug; 130(34):11312-6. PubMed ID: 18671396
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controllable growth of highly ordered ZnO nanorod arrays via inverted self-assembled monolayer template.
    Dong JJ; Zhang XW; Yin ZG; Zhang SG; Wang JX; Tan HR; Gao Y; Si FT; Gao HL
    ACS Appl Mater Interfaces; 2011 Nov; 3(11):4388-95. PubMed ID: 21967127
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conversion of ZnO nanorod arrays into ZnO/ZnS nanocable and ZnS nanotube arrays via an in situ chemistry strategy.
    Yan C; Xue D
    J Phys Chem B; 2006 Dec; 110(51):25850-5. PubMed ID: 17181231
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MoirĂ© pattern nanopore and nanorod arrays by focused ion beam guided anodization and nanoimprint molding.
    Chen B; Lu K
    Langmuir; 2011 Apr; 27(7):4117-25. PubMed ID: 21401046
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transparent, conductive carbon nanotube films.
    Wu Z; Chen Z; Du X; Logan JM; Sippel J; Nikolou M; Kamaras K; Reynolds JR; Tanner DB; Hebard AF; Rinzler AG
    Science; 2004 Aug; 305(5688):1273-6. PubMed ID: 15333836
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Standing [111] gold nanotube to nanorod arrays via template growth.
    Wang HW; Shieh CF; Chen HY; Shiu WC; Russo B; Cao G
    Nanotechnology; 2006 May; 17(10):2689-94. PubMed ID: 21727525
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.