These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
412 related articles for article (PubMed ID: 19687544)
1. Direct synthesis of silicon oxide nanowires on organic polymer substrates. Yun J; Jeong Y; Lee GH Nanotechnology; 2009 Sep; 20(36):365606. PubMed ID: 19687544 [TBL] [Abstract][Full Text] [Related]
2. Low temperature synthesis and characterization of MgO/ZnO composite nanowire arrays. Shimpi P; Gao PX; Goberman DG; Ding Y Nanotechnology; 2009 Mar; 20(12):125608. PubMed ID: 19420477 [TBL] [Abstract][Full Text] [Related]
3. The optical properties of vertically aligned ZnO nanowires deposited using a dimethylzinc adduct. Black K; Jones AC; Alexandrou I; Heys PN; Chalker PR Nanotechnology; 2010 Jan; 21(4):045701. PubMed ID: 20009167 [TBL] [Abstract][Full Text] [Related]
4. The controlled growth of single metallic and conducting polymer nanowires via gate-assisted electrochemical deposition. Hu Y; To AC; Yun M Nanotechnology; 2009 Jul; 20(28):285605. PubMed ID: 19550021 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and characterization of iron silicon boron (Fe5Si2B) and iron boride (Fe3B) nanowires. Li Y; Chang RP J Am Chem Soc; 2006 Oct; 128(39):12778-84. PubMed ID: 17002372 [TBL] [Abstract][Full Text] [Related]
6. Patterned growth of silicon oxide nanowires from iron ion implanted SiO2 substrates. Choi Y; Johnson JL; Ural A Nanotechnology; 2009 Apr; 20(13):135307. PubMed ID: 19420498 [TBL] [Abstract][Full Text] [Related]
7. Silicon oxide nanowires: facile and controlled large area fabrication of vertically oriented silicon oxide nanowires for photoluminescence and sensor applications. Alabi TR; Yuan D; Bucknall D; Das S ACS Appl Mater Interfaces; 2013 Sep; 5(18):8932-8. PubMed ID: 23915216 [TBL] [Abstract][Full Text] [Related]
8. Vertically oriented epitaxial germanium nanowires on silicon substrates using thin germanium buffer layers. Jung JH; Yoon HS; Kim YL; Song MS; Kim Y; Chen ZG; Zou J; Choi DY; Kang JH; Joyce HJ; Gao Q; Hoe Tan H; Jagadish C Nanotechnology; 2010 Jul; 21(29):295602. PubMed ID: 20585174 [TBL] [Abstract][Full Text] [Related]
9. Epitaxial integration of nanowires in microsystems by local micrometer-scale vapor-phase epitaxy. Mølhave K; Wacaser BA; Petersen DH; Wagner JB; Samuelson L; Bøggild P Small; 2008 Oct; 4(10):1741-6. PubMed ID: 18819133 [TBL] [Abstract][Full Text] [Related]
10. Plasma-enhanced low temperature growth of silicon nanowires and hierarchical structures by using tin and indium catalysts. Yu L; O'Donnell B; Alet PJ; Conesa-Boj S; Peiró F; Arbiol J; Cabarrocas PR Nanotechnology; 2009 Jun; 20(22):225604. PubMed ID: 19436096 [TBL] [Abstract][Full Text] [Related]
11. In situ fabrication of inorganic nanowire arrays grown from and aligned on metal substrates. Zhang W; Yang S Acc Chem Res; 2009 Oct; 42(10):1617-27. PubMed ID: 19645439 [TBL] [Abstract][Full Text] [Related]
12. Gold-catalyzed low-temperature growth of cadmium oxide nanowires by vapor transport. Kuo TJ; Huang MH J Phys Chem B; 2006 Jul; 110(28):13717-21. PubMed ID: 16836315 [TBL] [Abstract][Full Text] [Related]
13. Three dimensional architectures of ultra-high density semiconducting nanowires deposited on chip. Ryan KM; Erts D; Olin H; Morris MA; Holmes JD J Am Chem Soc; 2003 May; 125(20):6284-8. PubMed ID: 12785861 [TBL] [Abstract][Full Text] [Related]
14. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nomura K; Ohta H; Takagi A; Kamiya T; Hirano M; Hosono H Nature; 2004 Nov; 432(7016):488-92. PubMed ID: 15565150 [TBL] [Abstract][Full Text] [Related]
15. Direct fabrication of metavanadate phosphor films on organic substrates for white-light-emitting devices. Nakajima T; Isobe M; Tsuchiya T; Ueda Y; Kumagai T Nat Mater; 2008 Sep; 7(9):735-40. PubMed ID: 18677318 [TBL] [Abstract][Full Text] [Related]
16. Photodetector arrays directly assembled onto polymer substrates from aqueous solution. Amos FF; Morin SA; Streifer JA; Hamers RJ; Jin S J Am Chem Soc; 2007 Nov; 129(46):14296-302. PubMed ID: 17973378 [TBL] [Abstract][Full Text] [Related]
17. Low-temperature vapour-liquid-solid (VLS) growth of vertically aligned silicon oxide nanowires using concurrent ion bombardment. Bettge M; MacLaren S; Burdin S; Wen JG; Abraham D; Petrov I; Sammann E Nanotechnology; 2009 Mar; 20(11):115607. PubMed ID: 19420447 [TBL] [Abstract][Full Text] [Related]
18. Direct integration of metal oxide nanowires into an effective gas sensing device. Vomiero A; Ponzoni A; Comini E; Ferroni M; Faglia G; Sberveglieri G Nanotechnology; 2010 Apr; 21(14):145502. PubMed ID: 20220218 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and characterization of silicon nanowires on mesophase carbon microbead substrates by chemical vapor deposition. Li WN; Ding YS; Yuan J; Gomez S; Suib SL; Galasso FS; Dicarlo JF J Phys Chem B; 2005 Mar; 109(8):3291-7. PubMed ID: 16851355 [TBL] [Abstract][Full Text] [Related]
20. Gallium assisted plasma enhanced chemical vapor deposition of silicon nanowires. Zardo I; Yu L; Conesa-Boj S; Estradé S; Alet PJ; Rössler J; Frimmer M; Roca I Cabarrocas P; Peiró F; Arbiol J; Morante JR; Fontcuberta I Morral A Nanotechnology; 2009 Apr; 20(15):155602. PubMed ID: 19420550 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]