These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 19687546)

  • 1. In situ tensile testing of individual Co nanowires inside a scanning electron microscope.
    Zhang D; Breguet JM; Clavel R; Phillippe L; Utke I; Michler J
    Nanotechnology; 2009 Sep; 20(36):365706. PubMed ID: 19687546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Note: Mechanical and electrical characterization of nanowires in scanning electron microscope.
    Ru C; Sun L
    Rev Sci Instrum; 2011 Oct; 82(10):106105. PubMed ID: 22047343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The elastic moduli of oriented tin oxide nanowires.
    Barth S; Harnagea C; Mathur S; Rosei F
    Nanotechnology; 2009 Mar; 20(11):115705. PubMed ID: 19420453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative in situ TEM tensile testing of an individual nickel nanowire.
    Lu Y; Peng C; Ganesan Y; Huang JY; Lou J
    Nanotechnology; 2011 Sep; 22(35):355702. PubMed ID: 21817781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring true Young's modulus of a cantilevered nanowire: effect of clamping on resonance frequency.
    Qin Q; Xu F; Cao Y; Ro PI; Zhu Y
    Small; 2012 Aug; 8(16):2571-6. PubMed ID: 22619003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dose and energy dependence of mechanical properties of focused electron-beam-induced pillar deposits from Cu(C5HF6O2)2.
    Friedli V; Utke I; Mølhave K; Michler J
    Nanotechnology; 2009 Sep; 20(38):385304. PubMed ID: 19713594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical properties of microwave hydrothermally synthesized titanate nanowires.
    Chang M; Chung CC; Deka JR; Lin CH; Chung TW
    Nanotechnology; 2008 Jan; 19(2):025710. PubMed ID: 21817559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous measurement of static and kinetic friction of ZnO nanowires in situ with a scanning electron microscope.
    Polyakov B; Dorogin LM; Vlassov S; Kink I; Romanov AE; Lohmus R
    Micron; 2012 Nov; 43(11):1140-6. PubMed ID: 22341617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computational and experimental investigation of the mechanical properties of single ZnTe nanowires.
    Davami K; Mortazavi B; Ghassemi HM; Yassar RS; Lee JS; Rémond Y; Meyyappan M
    Nanoscale; 2012 Feb; 4(3):897-903. PubMed ID: 22173853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative fracture strength and plasticity measurements of lithiated silicon nanowires by in situ TEM tensile experiments.
    Kushima A; Huang JY; Li J
    ACS Nano; 2012 Nov; 6(11):9425-32. PubMed ID: 23025575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic force microscopy in mechanical measurements of single nanowires.
    Pruchnik BC; Fidelus JD; Gacka E; Mika K; Zaraska L; Sulka GD; Gotszalk TP
    Ultramicroscopy; 2024 Sep; 263():113985. PubMed ID: 38759603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallography-Derived Young's Modulus and Tensile Strength of AlN Nanowires as Revealed by in Situ Transmission Electron Microscopy.
    Firestein KL; Kvashnin DG; Fernando JFS; Zhang C; Siriwardena DP; Sorokin PB; Golberg DV
    Nano Lett; 2019 Mar; 19(3):2084-2091. PubMed ID: 30786716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical Properties of Crystalline Silicon Carbide Nanowires.
    Zhang H; Ding W; Aidun DK
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1660-8. PubMed ID: 26353709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical characterization of nickel nanowires by using a customized atomic force microscope.
    Celik E; Guven I; Madenci E
    Nanotechnology; 2011 Apr; 22(15):155702. PubMed ID: 21389567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable Mechanical Property and Structural Transition of Silicon Nitride Nanowires Induced by Focused Ion Beam Irradiation.
    Wei B; Deng Q; Ji Y; Wang Z; Han X
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):32175-32181. PubMed ID: 32551486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pick-and-place nanomanipulation using microfabricated grippers.
    Mølhave K; Wich T; Kortschack A; Bøggild P
    Nanotechnology; 2006 May; 17(10):2434-41. PubMed ID: 21727487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel in situ device for investigating the tensile and fatigue behaviors of bulk materials.
    Ma Z; Zhao H; Li Q; Wang K; Zhou X; Hu X; Cheng H; Lu S
    Rev Sci Instrum; 2013 Apr; 84(4):045104. PubMed ID: 23635229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastic Behavior of Nb
    Csiszár G; Lawitzki R; Everett C; Schmitz G
    ACS Appl Mater Interfaces; 2021 May; 13(20):24238-24249. PubMed ID: 33988356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suspended tungsten-based nanowires with enhanced mechanical properties grown by focused ion beam induced deposition.
    Córdoba R; Lorenzoni M; Pablo-Navarro J; Magén C; Pérez-Murano F; De Teresa JM
    Nanotechnology; 2017 Nov; 28(44):445301. PubMed ID: 28825408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Room temperature amorphous to nanocrystalline transformation in ultra-thin films under tensile stress: an in situ TEM study.
    Manoharan MP; Kumar S; Haque MA; Rajagopalan R; Foley HC
    Nanotechnology; 2010 Dec; 21(50):505707. PubMed ID: 21098951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.