These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 19687997)

  • 41. Probing the ultimate limits of plasmonic enhancement.
    Ciracì C; Hill RT; Mock JJ; Urzhumov Y; Fernández-Domínguez AI; Maier SA; Pendry JB; Chilkoti A; Smith DR
    Science; 2012 Aug; 337(6098):1072-4. PubMed ID: 22936772
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Surface plasmon polariton detection discriminating the polarization reversal image dipole effects.
    Lee KG; Ahn KJ; Kihm HW; Ahn JS; Kim TK; Hong S; Kim ZH; Kim DS
    Opt Express; 2008 Jul; 16(14):10641-9. PubMed ID: 18607478
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Excitation of multiple dipole surface plasmon resonances in spherical silver nanoparticles.
    Niesen B; Rand BP; Van Dorpe P; Shen H; Maes B; Genoe J; Heremans P
    Opt Express; 2010 Aug; 18(18):19032-8. PubMed ID: 20940797
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Asymmetric fishnet metamaterials with strong optical activity.
    Zhang YL; Jin W; Dong XZ; Zhao ZS; Duan XM
    Opt Express; 2012 May; 20(10):10776-87. PubMed ID: 22565701
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A compact light concentrator by the use of plasmonic faced folded nano-rods.
    Chung T; Lim Y; Lee IM; Lee SY; Choi J; Roh S; Kim KY; Lee B
    Opt Express; 2011 Oct; 19(21):20751-60. PubMed ID: 21997085
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Engineering photonic-plasmonic coupling in metal nanoparticle necklaces.
    Pasquale AJ; Reinhard BM; Dal Negro L
    ACS Nano; 2011 Aug; 5(8):6578-85. PubMed ID: 21739951
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nonlinear optical detection of proteins based on localized surface plasmons in surface immobilized gold nanospheres.
    Fukuba SY; Tsuboi K; Abe S; Kajikawa K
    Langmuir; 2008 Aug; 24(15):8367-72. PubMed ID: 18570447
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Visualizing the optical interaction tensor of a gold nanoparticle pair.
    Deutsch B; Hillenbrand R; Novotny L
    Nano Lett; 2010 Feb; 10(2):652-6. PubMed ID: 20055480
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Localized surface plasmon resonance effects on the magneto-optical activity of continuous Au/Co/Au trilayers.
    Armelles G; González-Díaz JB; García-Martín A; García-Martín JM; Cebollada A; Ujué González M; Acimovic S; Cesario J; Quidant R; Badenes G
    Opt Express; 2008 Sep; 16(20):16104-12. PubMed ID: 18825249
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Surface plasmon resonance in superperiodic metal nanoslits.
    Leong H; Guo J
    Opt Lett; 2011 Dec; 36(24):4764-6. PubMed ID: 22179876
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Past, present, and future of gold nanoparticles.
    Jennings T; Strouse G
    Adv Exp Med Biol; 2007; 620():34-47. PubMed ID: 18217333
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electric and magnetic resonances in arrays of coupled gold nanoparticle in-tandem pairs.
    Ekinci Y; Christ A; Agio M; Martin OJ; Solak HH; Löffler JF
    Opt Express; 2008 Aug; 16(17):13287-95. PubMed ID: 18711565
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Role of interfering optical fields in the trapping and melting of gold nanorods and related clusters.
    Deng HD; Li GC; Dai QF; Ouyang M; Lan S; Gopal AV; Trofimov VA; Lysak TM
    Opt Express; 2012 May; 20(10):10963-70. PubMed ID: 22565719
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Measurement of Scattering Nonlinearities from a Single Plasmonic Nanoparticle.
    Lee H; Li KY; Huang YT; Shen PT; Deka G; Oketani R; Yonemaru Y; Yamanaka M; Fujita K; Chu SW
    J Vis Exp; 2016 Jan; (107):. PubMed ID: 26780248
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres.
    Slablab A; Le Xuan L; Zielinski M; de Wilde Y; Jacques V; Chauvat D; Roch JF
    Opt Express; 2012 Jan; 20(1):220-7. PubMed ID: 22274345
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optical and electrical properties of Au nanoparticles in two-dimensional networks:an effective cluster model.
    Su H; Li Y; Li XY; Wong KS
    Opt Express; 2009 Nov; 17(24):22223-34. PubMed ID: 19997469
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of vertex truncation of polyhedral nanostructures on localized surface plasmon resonance.
    Ma WY; Yao J; Yang H; Liu JY; Li F; Hilton JP; Lin Q
    Opt Express; 2009 Aug; 17(17):14967-76. PubMed ID: 19687975
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Non-linear optical response by functionalized gold nanospheres: identifying design principles to maximize the molecular photo-release.
    Bergamini L; Voliani V; Cappello V; Nifosì R; Corni S
    Nanoscale; 2015 Aug; 7(32):13345-57. PubMed ID: 26206491
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Predicting the fluorescent enhancement rate by gold and silver nanospheres using finite-difference time-domain analysis.
    Centeno A; Xie F; Alford N
    IET Nanobiotechnol; 2013 Jun; 7(2):50-8. PubMed ID: 24046905
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.