These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 19688012)

  • 1. Nanodoublers as deep imaging markers for multi-photon microscopy.
    Extermann J; Bonacina L; Cuña E; Kasparian C; Mugnier Y; Feurer T; Wolf JP
    Opt Express; 2009 Aug; 17(17):15342-9. PubMed ID: 19688012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle.
    Hsieh CL; Pu Y; Grange R; Laporte G; Psaltis D
    Opt Express; 2010 Sep; 18(20):20723-31. PubMed ID: 20940968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous multifocal, multiphoton, photon counting microscopy.
    Carriles R; Sheetz KE; Hoover EE; Squier JA; Barzda V
    Opt Express; 2008 Jul; 16(14):10364-71. PubMed ID: 18607447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signal enhancement in multiphoton TIRF microscopy by shaping of broadband femtosecond pulses.
    Lane RS; Macpherson AN; Magennis SW
    Opt Express; 2012 Nov; 20(23):25948-59. PubMed ID: 23187410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo simulation of multiphoton fluorescence microscopic imaging through inhomogeneous tissuelike turbid media.
    Deng X; Gan X; Gu M
    J Biomed Opt; 2003 Jul; 8(3):440-9. PubMed ID: 12880350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of imaging depth in turbid media using a wide area detector.
    Crosignani V; Dvornikov AS; Gratton E
    J Biophotonics; 2011 Sep; 4(9):592-9. PubMed ID: 21425242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium.
    Dong CY; Koenig K; So P
    J Biomed Opt; 2003 Jul; 8(3):450-9. PubMed ID: 12880351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Femtosecond laser nanosurgery of sub-cellular structures in HeLa cells by employing Third Harmonic Generation imaging modality as diagnostic tool.
    Tserevelakis GJ; Psycharakis S; Resan B; Brunner F; Gavgiotaki E; Weingarten K; Filippidis G
    J Biophotonics; 2012 Feb; 5(2):200-7. PubMed ID: 22259045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the influence of optical absorption on polarization characterization of tissues.
    Wang Y; Huang Y; Zeng N; Guo Y; He Y; Ma H
    J Biomed Opt; 2018 Oct; 23(12):1-9. PubMed ID: 30369106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Mesoporous silica nanoparticles for two-photon fluorescence].
    Lebret V; Raehm L; Durand JO; Smaïhi M; Gerardin C; Nerambourg N; Werts MH; Blanchard-Desce M; Méthy-Gonnod D; Dubernet C
    Med Sci (Paris); 2009; 25(8-9):744-6. PubMed ID: 19765390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-photon imaging.
    Padmanabhan K; Andrews SE; Fitzpatrick JA
    Curr Protoc Cytom; 2010 Oct; Chapter 2():Unit2.9. PubMed ID: 20938919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct imaging of photonic nanojets.
    Ferrand P; Wenger J; Devilez A; Pianta M; Stout B; Bonod N; Popov E; Rigneault H
    Opt Express; 2008 May; 16(10):6930-40. PubMed ID: 18545397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extension of imaging depth in two-photon fluorescence microscopy using a long-wavelength high-pulse-energy femtosecond laser source.
    Wang C; Qiao L; He F; Cheng Y; Xu Z
    J Microsc; 2011 Aug; 243(2):179-83. PubMed ID: 21388374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of path-history-based fluorescence Monte Carlo method for photon migration in heterogeneous media.
    Jiang X; Deng Y; Luo Z; Wang K; Lian L; Yang X; Meglinski I; Luo Q
    Opt Express; 2014 Dec; 22(26):31948-65. PubMed ID: 25607163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional mapping of single gold nanoparticles embedded in a homogeneous transparent matrix using optical second-harmonic generation.
    Butet J; Bachelier G; Duboisset J; Bertorelle F; Russier-Antoine I; Jonin C; Benichou E; Brevet PF
    Opt Express; 2010 Oct; 18(21):22314-23. PubMed ID: 20941132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring the scattering coefficient of turbid media from two-photon microscopy.
    Sevrain D; Dubreuil M; Leray A; Odin C; Le Grand Y
    Opt Express; 2013 Oct; 21(21):25221-35. PubMed ID: 24150363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring two-photon microscopy ultrafast laser pulse duration at the sample plane using time-correlated single-photon counting.
    Kim Y; Vogel SS
    J Biomed Opt; 2020 Jan; 25(1):1-9. PubMed ID: 31994362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tripling the maximum imaging depth with third-harmonic generation microscopy.
    Yildirim M; Durr N; Ben-Yakar A
    J Biomed Opt; 2015 Sep; 20(9):096013. PubMed ID: 26376941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear optical microscopy at wavelengths exceeding 1.4 microm using a synchronously pumped femtosecond-pulsed optical parametric oscillator.
    McConnell G
    Phys Med Biol; 2007 Feb; 52(3):717-24. PubMed ID: 17228116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo.
    Wu J; Liang Y; Chen S; Hsu CL; Chavarha M; Evans SW; Shi D; Lin MZ; Tsia KK; Ji N
    Nat Methods; 2020 Mar; 17(3):287-290. PubMed ID: 32123392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.