BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 19688110)

  • 1. Inhibitory effect of flavonoids on the efflux of N-acetyl 5-aminosalicylic acid intracellularly formed in Caco-2 cells.
    Yoshimura S; Kawano K; Matsumura R; Sugihara N; Furuno K
    J Biomed Biotechnol; 2009; 2009():467489. PubMed ID: 19688110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of quercetin on the transport of N-acetyl 5-aminosalicylic acid.
    Kamishikiryo J; Matsumura R; Takamori T; Sugihara N
    J Pharm Pharmacol; 2013 Jul; 65(7):1037-43. PubMed ID: 23738731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitory effect of flavonoids on N-acetylation of 5-aminosalicylic acid in cultured rat hepatocytes.
    Mizoyama Y; Takaki H; Sugihara N; Furuno K
    Biol Pharm Bull; 2004 Sep; 27(9):1455-8. PubMed ID: 15340238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MK571 inhibits phase-2 conjugation of flavonols by Caco-2/TC7 cells, but does not specifically inhibit their apical efflux.
    Barrington RD; Needs PW; Williamson G; Kroon PA
    Biochem Pharmacol; 2015 Jun; 95(3):193-200. PubMed ID: 25801004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in vitro and in silico study on the flavonoid-mediated modulation of the transport of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) through Caco-2 monolayers.
    Schutte ME; Freidig AP; van de Sandt JJ; Alink GM; Rietjens IM; Groten JP
    Toxicol Appl Pharmacol; 2006 Dec; 217(2):204-15. PubMed ID: 16997339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of quercetin on the uptake and efflux of aristolochic acid I from Caco-2 cell monolayers.
    Kimura O; Fujii Y; Haraguchi K; Ohta C; Koga N; Kato Y; Endo T
    J Pharm Pharmacol; 2016 Jul; 68(7):883-9. PubMed ID: 27166429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous determination of 5-aminosalicylic acid and 5-acetylaminosalicylic acid by high-performance liquid chromatography.
    Brendel E; Meineke I; Witsch D; Zschunke M
    J Chromatogr; 1987 Jan; 385():299-304. PubMed ID: 3558586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small intestinal efflux mediated by MRP2 and BCRP shifts sulfasalazine intestinal permeability from high to low, enabling its colonic targeting.
    Dahan A; Amidon GL
    Am J Physiol Gastrointest Liver Physiol; 2009 Aug; 297(2):G371-7. PubMed ID: 19541926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presence or absence of a gallate moiety on catechins affects their cellular transport.
    Kadowaki M; Sugihara N; Tagashira T; Terao K; Furuno K
    J Pharm Pharmacol; 2008 Sep; 60(9):1189-95. PubMed ID: 18718123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flavone potently stimulates an apical transporter for flavonoids in human intestinal Caco-2 cells.
    Lies B; Martens S; Schmidt S; Boll M; Wenzel U
    Mol Nutr Food Res; 2012 Nov; 56(11):1627-35. PubMed ID: 22965487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple efflux pumps are involved in the transepithelial transport of colchicine: combined effect of p-glycoprotein and multidrug resistance-associated protein 2 leads to decreased intestinal absorption throughout the entire small intestine.
    Dahan A; Sabit H; Amidon GL
    Drug Metab Dispos; 2009 Oct; 37(10):2028-36. PubMed ID: 19589874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport studies with 5-aminosalicylate.
    Xin HW; Schwab M; Klotz U
    Eur J Clin Pharmacol; 2006 Oct; 62(10):871-5. PubMed ID: 16944117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prandial and diurnal effects on the absorption of orally administered enteric coated 5-aminosalicylic acid (5-ASA).
    De Mey C; Meineke I
    Br J Clin Pharmacol; 1992 Feb; 33(2):179-82. PubMed ID: 1550697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of flavonoids via enteric recycling: mechanistic studies of disposition of apigenin in the Caco-2 cell culture model.
    Hu M; Chen J; Lin H
    J Pharmacol Exp Ther; 2003 Oct; 307(1):314-21. PubMed ID: 12893842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A catenary model to study transport and conjugation of baicalein, a bioactive flavonoid, in the Caco-2 cell monolayer: demonstration of substrate inhibition.
    Sun H; Zhang L; Chow EC; Lin G; Zuo Z; Pang KS
    J Pharmacol Exp Ther; 2008 Jul; 326(1):117-26. PubMed ID: 18385448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atorvastatin transport in the Caco-2 cell model: contributions of P-glycoprotein and the proton-monocarboxylic acid co-transporter.
    Wu X; Whitfield LR; Stewart BH
    Pharm Res; 2000 Feb; 17(2):209-15. PubMed ID: 10751037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential modulation of ochratoxin A absorption across Caco-2 cells by dietary polyphenols, used at realistic intestinal concentrations.
    Sergent T; Garsou S; Schaut A; De Saeger S; Pussemier L; Van Peteghem C; Larondelle Y; Schneider YJ
    Toxicol Lett; 2005 Oct; 159(1):60-70. PubMed ID: 15955639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vectorial transport of fexofenadine across Caco-2 cells: involvement of apical uptake and basolateral efflux transporters.
    Ming X; Knight BM; Thakker DR
    Mol Pharm; 2011 Oct; 8(5):1677-86. PubMed ID: 21780830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights into the carrier-mediated transport of estrone-3-sulfate in the Caco-2 cell model.
    Grandvuinet AS; Gustavsson L; Steffansen B
    Mol Pharm; 2013 Sep; 10(9):3285-95. PubMed ID: 23834246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of transport and structure-permeability relationship of sulfasalazine and its analogs in Caco-2 cell monolayers.
    Liang E; Proudfoot J; Yazdanian M
    Pharm Res; 2000 Oct; 17(10):1168-74. PubMed ID: 11145220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.