BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 1968830)

  • 1. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors.
    Sommer H; Beltrán JP; Huijser P; Pape H; Lönnig WE; Saedler H; Schwarz-Sommer Z
    EMBO J; 1990 Mar; 9(3):605-13. PubMed ID: 1968830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis.
    Tröbner W; Ramirez L; Motte P; Hue I; Huijser P; Lönnig WE; Saedler H; Sommer H; Schwarz-Sommer Z
    EMBO J; 1992 Dec; 11(13):4693-704. PubMed ID: 1361166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens.
    Jack T; Brockman LL; Meyerowitz EM
    Cell; 1992 Feb; 68(4):683-97. PubMed ID: 1346756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development.
    Schwarz-Sommer Z; Hue I; Huijser P; Flor PJ; Hansen R; Tetens F; Lönnig WE; Saedler H; Sommer H
    EMBO J; 1992 Jan; 11(1):251-63. PubMed ID: 1346760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular characterization of two stamen-specific genes, tap1 and fil1, that are expressed in the wild type, but not in the deficiens mutant of Antirrhinum majus.
    Nacken WK; Huijser P; Beltran JP; Saedler H; Sommer H
    Mol Gen Genet; 1991 Sep; 229(1):129-36. PubMed ID: 1680216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional analysis of the Antirrhinum floral homeotic DEFICIENS gene in vivo and in vitro by using a temperature-sensitive mutant.
    Zachgo S; Silva Ede A; Motte P; Tröbner W; Saedler H; Schwarz-Sommer Z
    Development; 1995 Sep; 121(9):2861-75. PubMed ID: 7555713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic complementation of a floral homeotic mutation, apetala3, with an Arabidopsis thaliana gene homologous to DEFICIENS of Antirrhinum majus.
    Okamoto H; Yano A; Shiraishi H; Okada K; Shimura Y
    Plant Mol Biol; 1994 Oct; 26(1):465-72. PubMed ID: 7948893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple interactions amongst floral homeotic MADS box proteins.
    Davies B; Egea-Cortines M; de Andrade Silva E; Saedler H; Sommer H
    EMBO J; 1996 Aug; 15(16):4330-43. PubMed ID: 8861961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular analysis of tap2, an anther-specific gene from Antirrhinum majus.
    Nacken WK; Huijser P; Saedler H; Sommer H
    FEBS Lett; 1991 Mar; 280(1):155-8. PubMed ID: 1672656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conservation of floral homeotic gene function between Arabidopsis and antirrhinum.
    Irish VF; Yamamoto YT
    Plant Cell; 1995 Oct; 7(10):1635-44. PubMed ID: 7580255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NTGLO: a tobacco homologue of the GLOBOSA floral homeotic gene of Antirrhinum majus: cDNA sequence and expression pattern.
    Hansen G; Estruch JJ; Sommer H; Spena A
    Mol Gen Genet; 1993 May; 239(1-2):310-2. PubMed ID: 8099711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The S locus-linked Primula homeotic mutant sepaloid shows characteristics of a B-function mutant but does not result from mutation in a B-function gene.
    Li J; Webster M; Dudas B; Cook H; Manfield I; Davies B; Gilmartin PM
    Plant J; 2008 Oct; 56(1):1-12. PubMed ID: 18564384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes.
    Ma H; Yanofsky MF; Meyerowitz EM
    Genes Dev; 1991 Mar; 5(3):484-95. PubMed ID: 1672119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional interaction between the homeotic genes fbp1 and pMADS1 during petunia floral organogenesis.
    Angenent GC; Busscher M; Franken J; Dons HJ; van Tunen AJ
    Plant Cell; 1995 May; 7(5):507-16. PubMed ID: 7780304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. STYLOSA and FISTULATA: regulatory components of the homeotic control of Antirrhinum floral organogenesis.
    Motte P; Saedler H; Schwarz-Sommer Z
    Development; 1998 Jan; 125(1):71-84. PubMed ID: 9389665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of three GLOBOSA-like MADS-box genes from maize: evidence for ancient paralogy in one class of floral homeotic B-function genes of grasses.
    Münster T; Wingen LU; Faigl W; Werth S; Saedler H; Theissen G
    Gene; 2001 Jan; 262(1-2):1-13. PubMed ID: 11179662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus.
    Carpenter R; Coen ES
    Genes Dev; 1990 Sep; 4(9):1483-93. PubMed ID: 1979295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of antirrhinum petal development and identification of target genes of the class B MADS box gene DEFICIENS.
    Bey M; Stüber K; Fellenberg K; Schwarz-Sommer Z; Sommer H; Saedler H; Zachgo S
    Plant Cell; 2004 Dec; 16(12):3197-215. PubMed ID: 15539471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual role for fimbriata in regulating floral homeotic genes and cell division in Antirrhinum.
    Ingram GC; Doyle S; Carpenter R; Schultz EA; Simon R; Coen ES
    EMBO J; 1997 Nov; 16(21):6521-34. PubMed ID: 9351833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential expression of two MADS box genes in wild-type and mutant petunia flowers.
    Angenent GC; Busscher M; Franken J; Mol JN; van Tunen AJ
    Plant Cell; 1992 Aug; 4(8):983-93. PubMed ID: 1356537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.