These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
377 related articles for article (PubMed ID: 1968830)
1. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. Sommer H; Beltrán JP; Huijser P; Pape H; Lönnig WE; Saedler H; Schwarz-Sommer Z EMBO J; 1990 Mar; 9(3):605-13. PubMed ID: 1968830 [TBL] [Abstract][Full Text] [Related]
2. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. Tröbner W; Ramirez L; Motte P; Hue I; Huijser P; Lönnig WE; Saedler H; Sommer H; Schwarz-Sommer Z EMBO J; 1992 Dec; 11(13):4693-704. PubMed ID: 1361166 [TBL] [Abstract][Full Text] [Related]
3. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Jack T; Brockman LL; Meyerowitz EM Cell; 1992 Feb; 68(4):683-97. PubMed ID: 1346756 [TBL] [Abstract][Full Text] [Related]
4. Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. Schwarz-Sommer Z; Hue I; Huijser P; Flor PJ; Hansen R; Tetens F; Lönnig WE; Saedler H; Sommer H EMBO J; 1992 Jan; 11(1):251-63. PubMed ID: 1346760 [TBL] [Abstract][Full Text] [Related]
5. Molecular characterization of two stamen-specific genes, tap1 and fil1, that are expressed in the wild type, but not in the deficiens mutant of Antirrhinum majus. Nacken WK; Huijser P; Beltran JP; Saedler H; Sommer H Mol Gen Genet; 1991 Sep; 229(1):129-36. PubMed ID: 1680216 [TBL] [Abstract][Full Text] [Related]
6. Functional analysis of the Antirrhinum floral homeotic DEFICIENS gene in vivo and in vitro by using a temperature-sensitive mutant. Zachgo S; Silva Ede A; Motte P; Tröbner W; Saedler H; Schwarz-Sommer Z Development; 1995 Sep; 121(9):2861-75. PubMed ID: 7555713 [TBL] [Abstract][Full Text] [Related]
7. Genetic complementation of a floral homeotic mutation, apetala3, with an Arabidopsis thaliana gene homologous to DEFICIENS of Antirrhinum majus. Okamoto H; Yano A; Shiraishi H; Okada K; Shimura Y Plant Mol Biol; 1994 Oct; 26(1):465-72. PubMed ID: 7948893 [TBL] [Abstract][Full Text] [Related]
8. Multiple interactions amongst floral homeotic MADS box proteins. Davies B; Egea-Cortines M; de Andrade Silva E; Saedler H; Sommer H EMBO J; 1996 Aug; 15(16):4330-43. PubMed ID: 8861961 [TBL] [Abstract][Full Text] [Related]
9. Molecular analysis of tap2, an anther-specific gene from Antirrhinum majus. Nacken WK; Huijser P; Saedler H; Sommer H FEBS Lett; 1991 Mar; 280(1):155-8. PubMed ID: 1672656 [TBL] [Abstract][Full Text] [Related]
10. Conservation of floral homeotic gene function between Arabidopsis and antirrhinum. Irish VF; Yamamoto YT Plant Cell; 1995 Oct; 7(10):1635-44. PubMed ID: 7580255 [TBL] [Abstract][Full Text] [Related]
11. NTGLO: a tobacco homologue of the GLOBOSA floral homeotic gene of Antirrhinum majus: cDNA sequence and expression pattern. Hansen G; Estruch JJ; Sommer H; Spena A Mol Gen Genet; 1993 May; 239(1-2):310-2. PubMed ID: 8099711 [TBL] [Abstract][Full Text] [Related]
12. The S locus-linked Primula homeotic mutant sepaloid shows characteristics of a B-function mutant but does not result from mutation in a B-function gene. Li J; Webster M; Dudas B; Cook H; Manfield I; Davies B; Gilmartin PM Plant J; 2008 Oct; 56(1):1-12. PubMed ID: 18564384 [TBL] [Abstract][Full Text] [Related]
13. AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Ma H; Yanofsky MF; Meyerowitz EM Genes Dev; 1991 Mar; 5(3):484-95. PubMed ID: 1672119 [TBL] [Abstract][Full Text] [Related]
14. Functional interaction between the homeotic genes fbp1 and pMADS1 during petunia floral organogenesis. Angenent GC; Busscher M; Franken J; Dons HJ; van Tunen AJ Plant Cell; 1995 May; 7(5):507-16. PubMed ID: 7780304 [TBL] [Abstract][Full Text] [Related]
15. STYLOSA and FISTULATA: regulatory components of the homeotic control of Antirrhinum floral organogenesis. Motte P; Saedler H; Schwarz-Sommer Z Development; 1998 Jan; 125(1):71-84. PubMed ID: 9389665 [TBL] [Abstract][Full Text] [Related]
16. Characterization of three GLOBOSA-like MADS-box genes from maize: evidence for ancient paralogy in one class of floral homeotic B-function genes of grasses. Münster T; Wingen LU; Faigl W; Werth S; Saedler H; Theissen G Gene; 2001 Jan; 262(1-2):1-13. PubMed ID: 11179662 [TBL] [Abstract][Full Text] [Related]
17. Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus. Carpenter R; Coen ES Genes Dev; 1990 Sep; 4(9):1483-93. PubMed ID: 1979295 [TBL] [Abstract][Full Text] [Related]
18. Characterization of antirrhinum petal development and identification of target genes of the class B MADS box gene DEFICIENS. Bey M; Stüber K; Fellenberg K; Schwarz-Sommer Z; Sommer H; Saedler H; Zachgo S Plant Cell; 2004 Dec; 16(12):3197-215. PubMed ID: 15539471 [TBL] [Abstract][Full Text] [Related]
19. Dual role for fimbriata in regulating floral homeotic genes and cell division in Antirrhinum. Ingram GC; Doyle S; Carpenter R; Schultz EA; Simon R; Coen ES EMBO J; 1997 Nov; 16(21):6521-34. PubMed ID: 9351833 [TBL] [Abstract][Full Text] [Related]
20. Differential expression of two MADS box genes in wild-type and mutant petunia flowers. Angenent GC; Busscher M; Franken J; Mol JN; van Tunen AJ Plant Cell; 1992 Aug; 4(8):983-93. PubMed ID: 1356537 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]