BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 19688753)

  • 21. Susceptibility of mitochondrial superoxide dismutase to aluminium induced oxidative damage.
    Kumar V; Bal A; Gill KD
    Toxicology; 2009 Jan; 255(3):117-23. PubMed ID: 19010380
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The human mitochondrial proteome: oxidative stress, protein modifications and oxidative phosphorylation.
    Gibson BW
    Int J Biochem Cell Biol; 2005 May; 37(5):927-34. PubMed ID: 15743667
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of the 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase multigene family of Malus domestica Borkh.
    Binnie JE; McManus MT
    Phytochemistry; 2009 Feb; 70(3):348-60. PubMed ID: 19223050
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Profiling mitochondrial proteins in radiation-induced genome-unstable cell lines with persistent oxidative stress by mass spectrometry.
    Miller JH; Jin S; Morgan WF; Yang A; Wan Y; Aypar U; Peters JS; Springer DL
    Radiat Res; 2008 Jun; 169(6):700-6. PubMed ID: 18494543
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wheat mitochondrial proteomes provide new links between antioxidant defense and plant salinity tolerance.
    Jacoby RP; Millar AH; Taylor NL
    J Proteome Res; 2010 Dec; 9(12):6595-604. PubMed ID: 21043471
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitochondrial superoxide plays a crucial role in the development of mitochondrial dysfunction during high glucose exposure in rat renal proximal tubular cells.
    Munusamy S; MacMillan-Crow LA
    Free Radic Biol Med; 2009 Apr; 46(8):1149-57. PubMed ID: 19439219
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proteomic identification of mitochondrial carbonylated proteins in two maturation stages of pepper fruits.
    Camejo D; Jiménez A; Palma JM; Sevilla F
    Proteomics; 2015 Aug; 15(15):2634-42. PubMed ID: 25913852
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Native-DIGE: a new look at the mitochondrial membrane proteome.
    Dani D; Dencher NA
    Biotechnol J; 2008 Jun; 3(6):817-22. PubMed ID: 18446869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proteome analysis of grape skins during ripening.
    Deytieux C; Geny L; Lapaillerie D; Claverol S; Bonneu M; Donèche B
    J Exp Bot; 2007; 58(7):1851-62. PubMed ID: 17426054
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of genes for melatonin synthetic enzymes in 'Red Fuji' apple (Malus domestica Borkh.cv.Red) and their expression and melatonin production during fruit development.
    Lei Q; Wang L; Tan DX; Zhao Y; Zheng XD; Chen H; Li QT; Zuo BX; Kong J
    J Pineal Res; 2013 Nov; 55(4):443-51. PubMed ID: 24102635
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of chlorogenic acid on capacity of free radicals scavenging and proteomic changes in postharvest fruit of nectarine.
    Xi Y; Jiao W; Cao J; Jiang W
    PLoS One; 2017; 12(8):e0182494. PubMed ID: 28771559
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proteome of plant peroxisomes: new perspectives on the role of these organelles in cell biology.
    Palma JM; Corpas FJ; del Río LA
    Proteomics; 2009 May; 9(9):2301-12. PubMed ID: 19343723
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fruit load and elevation affect ethylene biosynthesis and action in apple fruit (Malus domestica L. Borkh) during development, maturation and ripening.
    Dal Cin V; Danesin M; Botton A; Boschetti A; Dorigoni A; Ramina A
    Plant Cell Environ; 2007 Nov; 30(11):1480-5. PubMed ID: 17897417
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon metabolism of peach fruit after harvest: changes in enzymes involved in organic acid and sugar level modifications.
    Borsani J; Budde CO; Porrini L; Lauxmann MA; Lombardo VA; Murray R; Andreo CS; Drincovich MF; Lara MV
    J Exp Bot; 2009; 60(6):1823-37. PubMed ID: 19264753
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of mouldy core and core rot on physiological and biochemical responses of apple fruit.
    Li S; Zhang L; Liu X
    J Sci Food Agric; 2011 Nov; 91(14):2674-8. PubMed ID: 21681764
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The developing reproductive 'sink' induces oxidative stress to mediate nitrogen mobilization during monocarpic senescence in wheat.
    Srivalli B; Khanna-Chopra R
    Biochem Biophys Res Commun; 2004 Dec; 325(1):198-202. PubMed ID: 15522219
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Building the mitochondrial proteome.
    Da Cruz S; Parone PA; Martinou JC
    Expert Rev Proteomics; 2005 Aug; 2(4):541-51. PubMed ID: 16097887
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proteomic analysis of the oil palm fruit mesocarp reveals elevated oxidative phosphorylation activity is critical for increased storage oil production.
    Loei H; Lim J; Tan M; Lim TK; Lin QS; Chew FT; Kulaveerasingam H; Chung MC
    J Proteome Res; 2013 Nov; 12(11):5096-109. PubMed ID: 24083564
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The mitochondrial proteome database: MitoP2.
    Elstner M; Andreoli C; Klopstock T; Meitinger T; Prokisch H
    Methods Enzymol; 2009; 457():3-20. PubMed ID: 19426859
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simulated microgravity promotes cellular senescence via oxidant stress in rat PC12 cells.
    Wang J; Zhang J; Bai S; Wang G; Mu L; Sun B; Wang D; Kong Q; Liu Y; Yao X; Xu Y; Li H
    Neurochem Int; 2009 Dec; 55(7):710-6. PubMed ID: 19616052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.