These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19688758)

  • 1. On the impact of parametric assumptions and robust alternatives for longitudinal data analysis.
    Lu N; Tang W; He H; Yu Q; Crits-Christoph P; Zhang H; Tu X
    Biom J; 2009 Aug; 51(4):627-43. PubMed ID: 19688758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of dichotomization in longitudinal data analysis: a simulation study.
    Yoo B
    Pharm Stat; 2010; 9(4):298-312. PubMed ID: 19904810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robustness of a parametric model for informatively censored bivariate longitudinal data under misspecification of its distributional assumptions: A simulation study.
    Pantazis N; Touloumi G
    Stat Med; 2007 Dec; 26(30):5473-85. PubMed ID: 18058854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of longitudinal clinical trials with missing data using multiple imputation in conjunction with robust regression.
    Mehrotra DV; Li X; Liu J; Lu K
    Biometrics; 2012 Dec; 68(4):1250-9. PubMed ID: 22994905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rank-preserving regression: a more robust rank regression model against outliers.
    Chen T; Kowalski J; Chen R; Wu P; Zhang H; Feng C; Tu XM
    Stat Med; 2016 Aug; 35(19):3333-46. PubMed ID: 26934999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple generalized estimating equations (GEEs) and weighted generalized estimating equations (WGEEs) in longitudinal studies with dropouts: guidelines and implementation in R.
    Salazar A; Ojeda B; Dueñas M; Fernández F; Failde I
    Stat Med; 2016 Aug; 35(19):3424-48. PubMed ID: 27059703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On assessing model fit for distribution-free longitudinal models under missing data.
    Wu P; Tu XM; Kowalski J
    Stat Med; 2014 Jan; 33(1):143-57. PubMed ID: 23897653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Empirical-likelihood-based criteria for model selection on marginal analysis of longitudinal data with dropout missingness.
    Chen C; Shen B; Zhang L; Xue Y; Wang M
    Biometrics; 2019 Sep; 75(3):950-965. PubMed ID: 31004449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Doubly robust and multiple-imputation-based generalized estimating equations.
    Birhanu T; Molenberghs G; Sotto C; Kenward MG
    J Biopharm Stat; 2011 Mar; 21(2):202-25. PubMed ID: 21390997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A class of distribution-free models for longitudinal mediation analysis.
    Gunzler D; Tang W; Lu N; Wu P; Tu XM
    Psychometrika; 2014 Oct; 79(4):543-68. PubMed ID: 24271505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Weighted generalized estimating equations and unified estimation for longitudinal data with nonmonotone missing data patterns.
    Liu M; Zhao Y
    Stat Med; 2022 Mar; 41(7):1148-1156. PubMed ID: 34729797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of single-case experimental count data using the linear mixed effects model: A simulation study.
    Declercq L; Jamshidi L; Fernández-Castilla B; Beretvas SN; Moeyaert M; Ferron JM; Van den Noortgate W
    Behav Res Methods; 2019 Dec; 51(6):2477-2497. PubMed ID: 30105444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Doubly robust generalized estimating equations for longitudinal data.
    Seaman S; Copas A
    Stat Med; 2009 Mar; 28(6):937-55. PubMed ID: 19153970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expected estimating equations for missing data, measurement error, and misclassification, with application to longitudinal nonignorable missing data.
    Wang CY; Huang Y; Chao EC; Jeffcoat MK
    Biometrics; 2008 Mar; 64(1):85-95. PubMed ID: 17608787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protecting against nonrandomly missing data in longitudinal studies.
    Brown CH
    Biometrics; 1990 Mar; 46(1):143-55. PubMed ID: 2350568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation analysis for longitudinal data: applications to HIV and psychosocial research.
    Tu XM; Feng C; Kowalski J; Tang W; Wang H; Wan C; Ma Y
    Stat Med; 2007 Sep; 26(22):4116-38. PubMed ID: 17342700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of robust estimating equations to the analysis of quantitative longitudinal data.
    Hu M; Lachin JM
    Stat Med; 2001 Nov; 20(22):3411-28. PubMed ID: 11746326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A test of missing completely at random for longitudinal data with missing observations.
    Park T; Lee SY
    Stat Med; 1997 Aug; 16(16):1859-71. PubMed ID: 9280038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adjusting for nonignorable missingness when estimating generalized additive models.
    Xie H
    Biom J; 2010 Apr; 52(2):186-200. PubMed ID: 20422637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous inference and bias analysis for longitudinal data with covariate measurement error and missing responses.
    Yi GY; Liu W; Wu L
    Biometrics; 2011 Mar; 67(1):67-75. PubMed ID: 20528858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.