BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 19689425)

  • 21. iLM-2L: A two-level predictor for identifying protein lysine methylation sites and their methylation degrees by incorporating K-gap amino acid pairs into Chou׳s general PseAAC.
    Ju Z; Cao JZ; Gu H
    J Theor Biol; 2015 Nov; 385():50-7. PubMed ID: 26254214
    [TBL] [Abstract][Full Text] [Related]  

  • 22. STALLION: a stacking-based ensemble learning framework for prokaryotic lysine acetylation site prediction.
    Basith S; Lee G; Manavalan B
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34532736
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of Protein Lysine Acylation by Integrating Primary Sequence Information with Multiple Functional Features.
    Du Y; Zhai Z; Li Y; Lu M; Cai T; Zhou B; Huang L; Wei T; Li T
    J Proteome Res; 2016 Dec; 15(12):4234-4244. PubMed ID: 27774790
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of protein methylation sites by coupling improved ant colony optimization algorithm and support vector machine.
    Li ZC; Zhou X; Dai Z; Zou XY
    Anal Chim Acta; 2011 Oct; 703(2):163-71. PubMed ID: 21889630
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PTM-ssMP: A Web Server for Predicting Different Types of Post-translational Modification Sites Using Novel Site-specific Modification Profile.
    Liu Y; Wang M; Xi J; Luo F; Li A
    Int J Biol Sci; 2018; 14(8):946-956. PubMed ID: 29989096
    [TBL] [Abstract][Full Text] [Related]  

  • 26. AutoMotif server: prediction of single residue post-translational modifications in proteins.
    Plewczynski D; Tkacz A; Wyrwicz LS; Rychlewski L
    Bioinformatics; 2005 May; 21(10):2525-7. PubMed ID: 15728119
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ASEB: a web server for KAT-specific acetylation site prediction.
    Wang L; Du Y; Lu M; Li T
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W376-9. PubMed ID: 22600735
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis and prediction of human acetylation using a cascade classifier based on support vector machine.
    Ning Q; Yu M; Ji J; Ma Z; Zhao X
    BMC Bioinformatics; 2019 Jun; 20(1):346. PubMed ID: 31208321
    [TBL] [Abstract][Full Text] [Related]  

  • 29. iGlu-Lys: A Predictor for Lysine Glutarylation Through Amino Acid Pair Order Features.
    Xu Y; Yang Y; Ding J; Li C
    IEEE Trans Nanobioscience; 2018 Oct; 17(4):394-401. PubMed ID: 29994125
    [TBL] [Abstract][Full Text] [Related]  

  • 30. N-Ace: using solvent accessibility and physicochemical properties to identify protein N-acetylation sites.
    Lee TY; Hsu JB; Lin FM; Chang WC; Hsu PC; Huang HD
    J Comput Chem; 2010 Nov; 31(15):2759-71. PubMed ID: 20839302
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting O-glycosylation sites in mammalian proteins by using SVMs.
    Li S; Liu B; Zeng R; Cai Y; Li Y
    Comput Biol Chem; 2006 Jun; 30(3):203-8. PubMed ID: 16731044
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PLMD: An updated data resource of protein lysine modifications.
    Xu H; Zhou J; Lin S; Deng W; Zhang Y; Xue Y
    J Genet Genomics; 2017 May; 44(5):243-250. PubMed ID: 28529077
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting lysine phosphoglycerylation with fuzzy SVM by incorporating k-spaced amino acid pairs into Chou׳s general PseAAC.
    Ju Z; Cao JZ; Gu H
    J Theor Biol; 2016 May; 397():145-50. PubMed ID: 26908349
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting lysine-malonylation sites of proteins using sequence and predicted structural features.
    Taherzadeh G; Yang Y; Xu H; Xue Y; Liew AW; Zhou Y
    J Comput Chem; 2018 Aug; 39(22):1757-1763. PubMed ID: 29761520
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep learning based prediction of reversible HAT/HDAC-specific lysine acetylation.
    Yu K; Zhang Q; Liu Z; Du Y; Gao X; Zhao Q; Cheng H; Li X; Liu ZX
    Brief Bioinform; 2020 Sep; 21(5):1798-1805. PubMed ID: 32978618
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RMTLysPTM: recognizing multiple types of lysine PTM sites by deep analysis on sequences.
    Chen L; Chen Y
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38066710
    [TBL] [Abstract][Full Text] [Related]  

  • 37. iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset.
    Jia J; Liu Z; Xiao X; Liu B; Chou KC
    Anal Biochem; 2016 Mar; 497():48-56. PubMed ID: 26723495
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational analysis and prediction of lysine malonylation sites by exploiting informative features in an integrative machine-learning framework.
    Zhang Y; Xie R; Wang J; Leier A; Marquez-Lago TT; Akutsu T; Webb GI; Chou KC; Song J
    Brief Bioinform; 2019 Nov; 20(6):2185-2199. PubMed ID: 30351377
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bigram-PGK: phosphoglycerylation prediction using the technique of bigram probabilities of position specific scoring matrix.
    Chandra A; Sharma A; Dehzangi A; Shigemizu D; Tsunoda T
    BMC Mol Cell Biol; 2019 Dec; 20(Suppl 2):57. PubMed ID: 31856704
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved prediction of palmitoylation sites using PWMs and SVM.
    Li YX; Shao YH; Deng NY
    Protein Pept Lett; 2011 Feb; 18(2):186-93. PubMed ID: 21054270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.