BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 19689425)

  • 41. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.
    Melvin I; Ie E; Kuang R; Weston J; Stafford WN; Leslie C
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S2. PubMed ID: 17570145
    [TBL] [Abstract][Full Text] [Related]  

  • 42. RAM-PGK: Prediction of Lysine Phosphoglycerylation Based on Residue Adjacency Matrix.
    Chandra AA; Sharma A; Dehzangi A; Tsunoda T
    Genes (Basel); 2020 Dec; 11(12):. PubMed ID: 33419274
    [TBL] [Abstract][Full Text] [Related]  

  • 43. MLysPRED: graph-based multi-view clustering and multi-dimensional normal distribution resampling techniques to predict multiple lysine sites.
    Zuo Y; Hong Y; Zeng X; Zhang Q; Liu X
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35953081
    [TBL] [Abstract][Full Text] [Related]  

  • 44. predML-Site: Predicting Multiple Lysine PTM Sites With Optimal Feature Representation and Data Imbalance Minimization.
    Ahmed S; Rahman A; Hasan MAM; Rahman J; Islam MKB; Ahmad S
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3624-3634. PubMed ID: 34546927
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The world of protein acetylation.
    Drazic A; Myklebust LM; Ree R; Arnesen T
    Biochim Biophys Acta; 2016 Oct; 1864(10):1372-401. PubMed ID: 27296530
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Prediction of lysine crotonylation sites by incorporating the composition of k-spaced amino acid pairs into Chou's general PseAAC.
    Ju Z; He JJ
    J Mol Graph Model; 2017 Oct; 77():200-204. PubMed ID: 28886434
    [TBL] [Abstract][Full Text] [Related]  

  • 47. EvolStruct-Phogly: incorporating structural properties and evolutionary information from profile bigrams for the phosphoglycerylation prediction.
    Chandra AA; Sharma A; Dehzangi A; Tsunoda T
    BMC Genomics; 2019 Apr; 19(Suppl 9):984. PubMed ID: 30999859
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Predicting protein lysine phosphoglycerylation sites by hybridizing many sequence based features.
    Chen QY; Tang J; Du PF
    Mol Biosyst; 2017 May; 13(5):874-882. PubMed ID: 28396891
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comprehensive proteome analyses of lysine acetylation in tea leaves by sensing nitrogen nutrition.
    Jiang J; Gai Z; Wang Y; Fan K; Sun L; Wang H; Ding Z
    BMC Genomics; 2018 Nov; 19(1):840. PubMed ID: 30477445
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CPLM: a database of protein lysine modifications.
    Liu Z; Wang Y; Gao T; Pan Z; Cheng H; Yang Q; Cheng Z; Guo A; Ren J; Xue Y
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D531-6. PubMed ID: 24214993
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An intelligent system for identifying acetylated lysine on histones and nonhistone proteins.
    Lu CT; Lee TY; Chen YJ; Chen YJ
    Biomed Res Int; 2014; 2014():528650. PubMed ID: 25147802
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Predicting lysine lipoylation sites using bi-profile bayes feature extraction and fuzzy support vector machine algorithm.
    Ju Z; Wang SY
    Anal Biochem; 2018 Nov; 561-562():11-17. PubMed ID: 30218638
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recent Trends on the Development of Machine Learning Approaches for the Prediction of Lysine Acetylation Sites.
    Basith S; Chang HJ; Nithiyanandam S; Shin TH; Manavalan B; Lee G
    Curr Med Chem; 2022; 29(2):235-250. PubMed ID: 34477504
    [TBL] [Abstract][Full Text] [Related]  

  • 54. pSuc-PseRat: Predicting Lysine Succinylation in Proteins by Exploiting the Ratios of Sequence Coupling and Properties.
    Ai H; Wu R; Zhang L; Wu X; Ma J; Hu H; Huang L; Chen W; Zhao J; Liu H
    J Comput Biol; 2017 Oct; 24(10):1050-1059. PubMed ID: 28682641
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Global Analysis of Protein Lysine Succinylation Profiles and Their Overlap with Lysine Acetylation in the Marine Bacterium Vibrio parahemolyticus.
    Pan J; Chen R; Li C; Li W; Ye Z
    J Proteome Res; 2015 Oct; 14(10):4309-18. PubMed ID: 26369940
    [TBL] [Abstract][Full Text] [Related]  

  • 56. GlyStruct: glycation prediction using structural properties of amino acid residues.
    Reddy HM; Sharma A; Dehzangi A; Shigemizu D; Chandra AA; Tsunoda T
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):547. PubMed ID: 30717650
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Computational identification of multiple lysine PTM sites by analyzing the instance hardness and feature importance.
    Ahmed S; Rahman A; Hasan MAM; Ahmad S; Shovan SM
    Sci Rep; 2021 Sep; 11(1):18882. PubMed ID: 34556767
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prediction of posttranslational modification sites from amino acid sequences with kernel methods.
    Xu Y; Wang X; Wang Y; Tian Y; Shao X; Wu LY; Deng N
    J Theor Biol; 2014 Mar; 344():78-87. PubMed ID: 24291233
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Gly-PseAAC: Identifying protein lysine glycation through sequences.
    Xu Y; Li L; Ding J; Wu LY; Mai G; Zhou F
    Gene; 2017 Feb; 602():1-7. PubMed ID: 27845204
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A method to distinguish between lysine acetylation and lysine ubiquitination with feature selection and analysis.
    Zhou Y; Zhang N; Li BQ; Huang T; Cai YD; Kong XY
    J Biomol Struct Dyn; 2015; 33(11):2479-90. PubMed ID: 25616595
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.