These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 19689425)

  • 61. pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach.
    Jia J; Liu Z; Xiao X; Liu B; Chou KC
    J Theor Biol; 2016 Apr; 394():223-230. PubMed ID: 26807806
    [TBL] [Abstract][Full Text] [Related]  

  • 62. GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome.
    Li F; Li C; Wang M; Webb GI; Zhang Y; Whisstock JC; Song J
    Bioinformatics; 2015 May; 31(9):1411-9. PubMed ID: 25568279
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Accurate in silico identification of protein succinylation sites using an iterative semi-supervised learning technique.
    Zhao X; Ning Q; Chai H; Ma Z
    J Theor Biol; 2015 Jun; 374():60-5. PubMed ID: 25843215
    [TBL] [Abstract][Full Text] [Related]  

  • 64. predCar-site: Carbonylation sites prediction in proteins using support vector machine with resolving data imbalanced issue.
    Hasan MA; Li J; Ahmad S; Molla MK
    Anal Biochem; 2017 May; 525():107-113. PubMed ID: 28286168
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Proteome-wide lysine acetylation identification in developing rice (Oryza sativa) seeds and protein co-modification by acetylation, succinylation, ubiquitination, and phosphorylation.
    Meng X; Lv Y; Mujahid H; Edelmann MJ; Zhao H; Peng X; Peng Z
    Biochim Biophys Acta Proteins Proteom; 2018 Mar; 1866(3):451-463. PubMed ID: 29313810
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Predicting the protein SUMO modification sites based on Properties Sequential Forward Selection (PSFS).
    Liu B; Li S; Wang Y; Lu L; Li Y; Cai Y
    Biochem Biophys Res Commun; 2007 Jun; 358(1):136-9. PubMed ID: 17470363
    [TBL] [Abstract][Full Text] [Related]  

  • 67. SuccFind: a novel succinylation sites online prediction tool via enhanced characteristic strategy.
    Xu HD; Shi SP; Wen PP; Qiu JD
    Bioinformatics; 2015 Dec; 31(23):3748-50. PubMed ID: 26261224
    [TBL] [Abstract][Full Text] [Related]  

  • 68. GPS-PAIL: prediction of lysine acetyltransferase-specific modification sites from protein sequences.
    Deng W; Wang C; Zhang Y; Xu Y; Zhang S; Liu Z; Xue Y
    Sci Rep; 2016 Dec; 6():39787. PubMed ID: 28004786
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Regulation of cellular homoeostasis by reversible lysine acetylation.
    Scott I
    Essays Biochem; 2012; 52():13-22. PubMed ID: 22708560
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Identification of Acetylated Proteins in Borrelia burgdorferi.
    Yang Y; Wolfe A; Yang XF
    Methods Mol Biol; 2018; 1690():177-182. PubMed ID: 29032545
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Phogly-PseAAC: Prediction of lysine phosphoglycerylation in proteins incorporating with position-specific propensity.
    Xu Y; Ding YX; Ding J; Wu LY; Deng NY
    J Theor Biol; 2015 Aug; 379():10-5. PubMed ID: 25913879
    [TBL] [Abstract][Full Text] [Related]  

  • 72. O-GlcNAcPRED: a sensitive predictor to capture protein O-GlcNAcylation sites.
    Jia CZ; Liu T; Wang ZP
    Mol Biosyst; 2013 Nov; 9(11):2909-13. PubMed ID: 24056994
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Success: evolutionary and structural properties of amino acids prove effective for succinylation site prediction.
    López Y; Sharma A; Dehzangi A; Lal SP; Taherzadeh G; Sattar A; Tsunoda T
    BMC Genomics; 2018 Jan; 19(Suppl 1):923. PubMed ID: 29363424
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Mal-Lys: prediction of lysine malonylation sites in proteins integrated sequence-based features with mRMR feature selection.
    Xu Y; Ding YX; Ding J; Wu LY; Xue Y
    Sci Rep; 2016 Dec; 6():38318. PubMed ID: 27910954
    [TBL] [Abstract][Full Text] [Related]  

  • 75. CASVM: web server for SVM-based prediction of caspase substrates cleavage sites.
    Wee LJ; Tan TW; Ranganathan S
    Bioinformatics; 2007 Dec; 23(23):3241-3. PubMed ID: 17599937
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Prediction of protein structure class by coupling improved genetic algorithm and support vector machine.
    Li ZC; Zhou XB; Lin YR; Zou XY
    Amino Acids; 2008 Oct; 35(3):581-90. PubMed ID: 18427714
    [TBL] [Abstract][Full Text] [Related]  

  • 77. SucStruct: Prediction of succinylated lysine residues by using structural properties of amino acids.
    López Y; Dehzangi A; Lal SP; Taherzadeh G; Michaelson J; Sattar A; Tsunoda T; Sharma A
    Anal Biochem; 2017 Jun; 527():24-32. PubMed ID: 28363440
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Accurately predicting nitrosylated tyrosine sites using probabilistic sequence information.
    Rahman A; Ahmed S; Al Mehedi Hasan M; Ahmad S; Dehzangi I
    Gene; 2022 Jun; 826():146445. PubMed ID: 35358650
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Prediction of lysine formylation sites using support vector machine based on the sample selection from majority classes and synthetic minority over-sampling techniques.
    Sohrawordi M; Hossain MA
    Biochimie; 2022 Jan; 192():125-135. PubMed ID: 34627982
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Glypre: In Silico Prediction of Protein Glycation Sites by Fusing Multiple Features and Support Vector Machine.
    Zhao X; Zhao X; Bao L; Zhang Y; Dai J; Yin M
    Molecules; 2017 Nov; 22(11):. PubMed ID: 29099805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.