These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 19689879)
1. Quantifying the drivers of larval density patterns in two tropical mosquito species to maximize control efficiency. De Little SC; Bowman DM; Whelan PI; Brook BW; Bradshaw CJ Environ Entomol; 2009 Aug; 38(4):1013-21. PubMed ID: 19689879 [TBL] [Abstract][Full Text] [Related]
2. A comparison of Aedes vigilax larval population densities and associated vegetation categories in a coastal wetland, Northern Territory, Australia. Jacups SP; Kurucz N; Whelan PI; Carter JM J Vector Ecol; 2009 Dec; 34(2):311-6. PubMed ID: 20836834 [TBL] [Abstract][Full Text] [Related]
3. Endogenous and exogenous factors controlling temporal abundance patterns of tropical mosquitoes. Yang GJ; Brook BW; Whelan PI; Cleland S; Bradshaw CJ Ecol Appl; 2008 Dec; 18(8):2028-40. PubMed ID: 19263895 [TBL] [Abstract][Full Text] [Related]
4. A geospatial evaluation of Aedes vigilax larval control efforts across a coastal wetland, Northern Territory, Australia. Kurucz N; Whelan PI; Carter JM; Jacups SP J Vector Ecol; 2009 Dec; 34(2):317-23. PubMed ID: 20836835 [TBL] [Abstract][Full Text] [Related]
5. Determining meteorological drivers of salt marsh mosquito peaks in tropical northern Australia. Jacups SP; Carter J; Kurucz N; McDonnell J; Whelan PI J Vector Ecol; 2015 Dec; 40(2):277-81. PubMed ID: 26611962 [TBL] [Abstract][Full Text] [Related]
6. Determining Culex annulirostris larval densities and control efforts across a coastal wetland, Northern Territory, Australia. Kurucz N; Jacups S; Carter JM J Vector Ecol; 2016 Dec; 41(2):271-278. PubMed ID: 27860005 [TBL] [Abstract][Full Text] [Related]
7. In-vivo staining of Aedes vigilax, Aedes aegypti and Culex annulirostris larvae with Giemsa and other vital dyes. Kay BH; Mottram P J Am Mosq Control Assoc; 1986 Jun; 2(2):141-5. PubMed ID: 2466952 [TBL] [Abstract][Full Text] [Related]
8. Land Use and Larval Habitat Increase Aedes albopictus (Diptera: Culicidae) and Culex quinquefasciatus (Diptera: Culicidae) Abundance in Lowland Hawaii. McClure KM; Lawrence C; Kilpatrick AM J Med Entomol; 2018 Oct; 55(6):1509-1516. PubMed ID: 30085189 [TBL] [Abstract][Full Text] [Related]
9. Mosquito seasonality and arboviral disease incidence in Murray Valley, southeast Australia. Dhileepan K Med Vet Entomol; 1996 Oct; 10(4):375-84. PubMed ID: 8994141 [TBL] [Abstract][Full Text] [Related]
10. The insect-specific Palm Creek virus modulates West Nile virus infection in and transmission by Australian mosquitoes. Hall-Mendelin S; McLean BJ; Bielefeldt-Ohmann H; Hobson-Peters J; Hall RA; van den Hurk AF Parasit Vectors; 2016 Jul; 9(1):414. PubMed ID: 27457250 [TBL] [Abstract][Full Text] [Related]
11. Definition of Ross River virus vectors at Maroochy Shire, Australia. Ryan PA; Do KA; Kay BH J Med Entomol; 2000 Jan; 37(1):146-52. PubMed ID: 15218919 [TBL] [Abstract][Full Text] [Related]
12. Towards management of mosquitoes at Homebush Bay, Sydney, Australia. I. Seasonal activity and relative abundance of adults of Aedes vigilax, Culex sitiens, and other salt-marsh species, 1993-94 through 1997-98. Webb CE; Russell RC J Am Mosq Control Assoc; 1999 Jun; 15(2):242-9. PubMed ID: 10412120 [TBL] [Abstract][Full Text] [Related]
13. Successional mosquito dynamics in surrogate treehole and ground-container habitats in the northeastern United States: where does Aedes albopictus fit in? Johnson BJ; Sukhdeo MV J Vector Ecol; 2013 Jun; 38(1):168-74. PubMed ID: 23701622 [TBL] [Abstract][Full Text] [Related]
14. Difference in mosquito species (Diptera: Culicidae) and the transmission of Ross River virus between coastline and inland areas in Brisbane, Australia. Hu W; Mengersen K; Dale P; Tong S Environ Entomol; 2010 Feb; 39(1):88-97. PubMed ID: 20146843 [TBL] [Abstract][Full Text] [Related]
15. Experimental comparison of aerial larvicides and habitat modification for controlling disease-carrying Aedes vigilax mosquitoes. de Little SC; Williamson GJ; Bowman DM; Whelan PI; Brook BW; Bradshaw CJ Pest Manag Sci; 2012 May; 68(5):709-17. PubMed ID: 22076747 [TBL] [Abstract][Full Text] [Related]
16. Predictive indicators for Ross River virus infection in the Darwin area of tropical northern Australia, using long-term mosquito trapping data. Jacups SP; Whelan PI; Markey PG; Cleland SJ; Williamson GJ; Currie BJ Trop Med Int Health; 2008 Jul; 13(7):943-52. PubMed ID: 18482196 [TBL] [Abstract][Full Text] [Related]
17. Modeling Culex tarsalis abundance on the northern Colorado front range using a landscape-level approach. Schurich JA; Kumar S; Eisen L; Moore CG J Am Mosq Control Assoc; 2014 Mar; 30(1):7-20. PubMed ID: 24772672 [TBL] [Abstract][Full Text] [Related]
18. Vector competence of Aedes aegypti, Culex sitiens, Culex annulirostris, and Culex quinquefasciatus (Diptera: Culicidae) for Barmah Forest virus. Boyd AM; Kay BH J Med Entomol; 2000 Sep; 37(5):660-3. PubMed ID: 11004776 [TBL] [Abstract][Full Text] [Related]
19. Larval superiority of Culex pipiens to Aedes albopictus in a replacement series experiment: prospects for coexistence in Germany. Müller R; Knautz T; Vollroth S; Berger R; Kreß A; Reuss F; Groneberg DA; Kuch U Parasit Vectors; 2018 Feb; 11(1):80. PubMed ID: 29394910 [TBL] [Abstract][Full Text] [Related]
20. Efficacy of VectoBac (Bacillus thuringiensis variety israelensis) formulations for mosquito control in Australia. Russell TL; Brown MD; Purdie DM; Ryan PA; Kay BH J Econ Entomol; 2003 Dec; 96(6):1786-91. PubMed ID: 14977116 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]