BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 19690195)

  • 21. Proteomics in diagnosis of prostate cancer.
    Davalieva K; Polenakovic M
    Pril (Makedon Akad Nauk Umet Odd Med Nauki); 2015; 36(1):5-36. PubMed ID: 26076772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prostate cancer biomarker discovery using high performance mass spectral serum profiling.
    Oh JH; Lotan Y; Gurnani P; Rosenblatt KP; Gao J
    Comput Methods Programs Biomed; 2009 Oct; 96(1):33-41. PubMed ID: 19423179
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Serum levels of an isoform of apolipoprotein A-II as a potential marker for prostate cancer.
    Malik G; Ward MD; Gupta SK; Trosset MW; Grizzle WE; Adam BL; Diaz JI; Semmes OJ
    Clin Cancer Res; 2005 Feb; 11(3):1073-85. PubMed ID: 15709174
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SELDI protein profiling of dunning R-3327 derived cell lines: identification of molecular markers of prostate cancer progression.
    Malik G; Rojahn E; Ward MD; Gretzer MB; Partin AW; Semmes OJ; Veltri RW
    Prostate; 2007 Oct; 67(14):1565-75. PubMed ID: 17705230
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Serum proteomic profiling can discriminate prostate cancer from benign prostates in men with total prostate specific antigen levels between 2.5 and 15.0 ng/ml.
    Ornstein DK; Rayford W; Fusaro VA; Conrads TP; Ross SJ; Hitt BA; Wiggins WW; Veenstra TD; Liotta LA; Petricoin EF
    J Urol; 2004 Oct; 172(4 Pt 1):1302-5. PubMed ID: 15371828
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential protein synthesis and expression levels in normal and neoplastic human prostate cells and their regulation by type I and II interferons.
    Nagano K; Masters JR; Akpan A; Yang A; Corless S; Wood C; Hastie C; Zvelebil M; Cramer R; Naaby-Hansen S
    Oncogene; 2004 Mar; 23(9):1693-703. PubMed ID: 14647428
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of surface-enhanced laser desorption/ionization time-of-flight-based serum proteomic array technique for the early diagnosis of prostate cancer.
    Pan YZ; Xiao XY; Zhao D; Zhang L; Ji GY; Li Y; Yang BX; He DC; Zhao XJ
    Asian J Androl; 2006 Jan; 8(1):45-51. PubMed ID: 16372118
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Proteome of Primary Prostate Cancer.
    Iglesias-Gato D; Wikström P; Tyanova S; Lavallee C; Thysell E; Carlsson J; Hägglöf C; Cox J; Andrén O; Stattin P; Egevad L; Widmark A; Bjartell A; Collins CC; Bergh A; Geiger T; Mann M; Flores-Morales A
    Eur Urol; 2016 May; 69(5):942-52. PubMed ID: 26651926
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A TMEFF2-regulated cell cycle derived gene signature is prognostic of recurrence risk in prostate cancer.
    Georgescu C; Corbin JM; Thibivilliers S; Webb ZD; Zhao YD; Koster J; Fung KM; Asch AS; Wren JD; Ruiz-Echevarría MJ
    BMC Cancer; 2019 May; 19(1):423. PubMed ID: 31060542
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein profiling of post-prostatic massage urine specimens by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry to discriminate between prostate cancer and benign lesions.
    Okamoto A; Yamamoto H; Imai A; Hatakeyama S; Iwabuchi I; Yoneyama T; Hashimoto Y; Koie T; Kamimura N; Mori K; Yamaya K; Ohyama C
    Oncol Rep; 2009 Jan; 21(1):73-9. PubMed ID: 19082445
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differentiation of prostate cancer from normal tissue in radical prostatectomy specimens by desorption electrospray ionization and touch spray ionization mass spectrometry.
    Kerian KS; Jarmusch AK; Pirro V; Koch MO; Masterson TA; Cheng L; Cooks RG
    Analyst; 2015 Feb; 140(4):1090-8. PubMed ID: 25521825
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) for determining prognosis in advanced stage hormone relapsing prostate cancer.
    Kohli M; Siegel E; Bhattacharya S; Khan MA; Shah R; Suva LJ
    Cancer Biomark; 2006; 2(6):249-58. PubMed ID: 17264396
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A PSA-guided approach for a better diagnosis of prostatic adenocarcinoma based on MALDI profiling and peptide identification.
    Fania C; Sogno I; Vasso M; Torretta E; Leone R; Bruno A; Consonni P; Albini A; Gelfi C
    Clin Chim Acta; 2015 Jan; 439():42-9. PubMed ID: 25312866
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential profiling of prostate tumors versus benign prostatic tissues by using a 2DE-MALDI-TOF-based proteomic approach.
    Kmeťová Sivoňová M; Tatarková Z; Jurečeková J; Kliment J; Híveš M; Lichardusová L; Kaplán P
    Neoplasma; 2021 Jan; 68(1):154-164. PubMed ID: 32977723
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of serum protein profiling by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry for the detection of prostate cancer: I. Assessment of platform reproducibility.
    Semmes OJ; Feng Z; Adam BL; Banez LL; Bigbee WL; Campos D; Cazares LH; Chan DW; Grizzle WE; Izbicka E; Kagan J; Malik G; McLerran D; Moul JW; Partin A; Prasanna P; Rosenzweig J; Sokoll LJ; Srivastava S; Srivastava S; Thompson I; Welsh MJ; White N; Winget M; Yasui Y; Zhang Z; Zhu L
    Clin Chem; 2005 Jan; 51(1):102-12. PubMed ID: 15613711
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein identification by accurate mass matrix-assisted laser desorption/ionization imaging of tryptic peptides.
    Schober Y; Schramm T; Spengler B; Römpp A
    Rapid Commun Mass Spectrom; 2011 Sep; 25(17):2475-83. PubMed ID: 21818808
    [TBL] [Abstract][Full Text] [Related]  

  • 37. More advantages in detecting bone and soft tissue metastases from prostate cancer using
    Pianou NK; Stavrou PZ; Vlontzou E; Rondogianni P; Exarhos DN; Datseris IE
    Hell J Nucl Med; 2019; 22(1):6-9. PubMed ID: 30843003
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitogen-activated protein kinase phosphatase 1 is overexpressed in prostate cancers and is inversely related to apoptosis.
    Magi-Galluzzi C; Mishra R; Fiorentino M; Montironi R; Yao H; Capodieci P; Wishnow K; Kaplan I; Stork PJ; Loda M
    Lab Invest; 1997 Jan; 76(1):37-51. PubMed ID: 9010448
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The RNA-Binding Protein PCBP1 Functions as a Tumor Suppressor in Prostate Cancer by Inhibiting Mitogen Activated Protein Kinase 1.
    Zhang Y; Meng L; Xiao L; Liu R; Li Z; Wang YL
    Cell Physiol Biochem; 2018; 48(4):1747-1754. PubMed ID: 30078000
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low-Molecular-Weight Protein Tyrosine Phosphatase Predicts Prostate Cancer Outcome by Increasing the Metastatic Potential.
    Ruela-de-Sousa RR; Hoekstra E; Hoogland AM; Souza Queiroz KC; Peppelenbosch MP; Stubbs AP; Pelizzaro-Rocha K; van Leenders GJLH; Jenster G; Aoyama H; Ferreira CV; Fuhler GM
    Eur Urol; 2016 Apr; 69(4):710-719. PubMed ID: 26159288
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.