These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
624 related articles for article (PubMed ID: 19690707)
1. Self-assembly of alpha,omega-aliphatic diamines on Ag nanoparticles as an effective localized surface plasmon nanosensor based in interparticle hot spots. Guerrini L; Izquierdo-Lorenzo I; Garcia-Ramos JV; Domingo C; Sanchez-Cortes S Phys Chem Chem Phys; 2009 Sep; 11(34):7363-71. PubMed ID: 19690707 [TBL] [Abstract][Full Text] [Related]
2. Nanosensors based on viologen functionalized silver nanoparticles: few molecules surface-enhanced Raman spectroscopy detection of polycyclic aromatic hydrocarbons in interparticle hot spots. Guerrini L; Garcia-Ramos JV; Domingo C; Sanchez-Cortes S Anal Chem; 2009 Feb; 81(4):1418-25. PubMed ID: 19215145 [TBL] [Abstract][Full Text] [Related]
3. Adsorption of linear aliphatic α,ω-dithiols on plasmonic metal nanoparticles: a structural study based on surface-enhanced Raman spectra. Kubackova J; Izquierdo-Lorenzo I; Jancura D; Miskovsky P; Sanchez-Cortes S Phys Chem Chem Phys; 2014 Jun; 16(23):11461-70. PubMed ID: 24802070 [TBL] [Abstract][Full Text] [Related]
4. Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit. Fan M; Brolo AG Phys Chem Chem Phys; 2009 Sep; 11(34):7381-9. PubMed ID: 19690709 [TBL] [Abstract][Full Text] [Related]
5. Adsorption of beta-adrenergic agonists used in sport doping on metal nanoparticles: a detection study based on surface-enhanced Raman scattering. Izquierdo-Lorenzo I; Sanchez-Cortes S; Garcia-Ramos JV Langmuir; 2010 Sep; 26(18):14663-70. PubMed ID: 20799745 [TBL] [Abstract][Full Text] [Related]
6. Sensitive surface-enhanced Raman spectroscopy (SERS) detection of organochlorine pesticides by alkyl dithiol-functionalized metal nanoparticles-induced plasmonic hot spots. Kubackova J; Fabriciova G; Miskovsky P; Jancura D; Sanchez-Cortes S Anal Chem; 2015 Jan; 87(1):663-9. PubMed ID: 25494815 [TBL] [Abstract][Full Text] [Related]
7. Nanospheres of silver nanoparticles: agglomeration, surface morphology control and application as SERS substrates. Shen XS; Wang GZ; Hong X; Zhu W Phys Chem Chem Phys; 2009 Sep; 11(34):7450-4. PubMed ID: 19690718 [TBL] [Abstract][Full Text] [Related]
8. The influences of particle number on hot spots in strongly coupled metal nanoparticles chain. Wang ZB; Luk'yanchuk BS; Guo W; Edwardson SP; Whitehead DJ; Li L; Liu Z; Watkins KG J Chem Phys; 2008 Mar; 128(9):094705. PubMed ID: 18331108 [TBL] [Abstract][Full Text] [Related]
9. Studies on adsorption of mono- and multi-chromophoric hemicyanine dyes on silver nanoparticles by surface-enhanced resonance Raman and theoretical calculations. Biswas N; Thomas S; Kapoor S; Mishra A; Wategaonkar S; Mukherjee T J Chem Phys; 2008 Nov; 129(18):184702. PubMed ID: 19045418 [TBL] [Abstract][Full Text] [Related]
10. Self-assembly of lambda-DNA networks/Ag nanoparticles: hybrid architecture and active-SERS substrate. Peng C; Song Y; Wei G; Zhang W; Li Z; Dong WF J Colloid Interface Sci; 2008 Jan; 317(1):183-90. PubMed ID: 17931640 [TBL] [Abstract][Full Text] [Related]
11. Interaction of DNA bases with silver nanoparticles: assembly quantified through SPRS and SERS. Basu S; Jana S; Pande S; Pal T J Colloid Interface Sci; 2008 May; 321(2):288-93. PubMed ID: 18346751 [TBL] [Abstract][Full Text] [Related]
12. Trace detection of triphenylene by surface enhanced Raman spectroscopy using functionalized silver nanoparticles with bis-acridinium lucigenine. López-Tocón I; Otero JC; Arenas JF; García-Ramos JV; Sánchez-Cortés S Langmuir; 2010 May; 26(10):6977-81. PubMed ID: 20205417 [TBL] [Abstract][Full Text] [Related]
13. Poly(ethylene glycol)-stabilized silver nanoparticles for bioanalytical applications of SERS spectroscopy. Shkilnyy A; Soucé M; Dubois P; Warmont F; Saboungi ML; Chourpa I Analyst; 2009 Sep; 134(9):1868-72. PubMed ID: 19684912 [TBL] [Abstract][Full Text] [Related]
14. Control of surface plasmon localization via self-assembly of silver nanoparticles along silver nanowires. Tran ML; Centeno SP; Hutchison JA; Engelkamp H; Liang D; Van Tendeloo G; Sels BF; Hofkens J; Uji-i H J Am Chem Soc; 2008 Dec; 130(51):17240-1. PubMed ID: 19049275 [TBL] [Abstract][Full Text] [Related]
15. Hybridization of localized surface plasmon resonance-based Au-Ag nanoparticles. Zhu S; Fu Y Biomed Microdevices; 2009 Jun; 11(3):579-83. PubMed ID: 19085108 [TBL] [Abstract][Full Text] [Related]
16. Effect of oxidation on surface-enhanced Raman scattering activity of silver nanoparticles: a quantitative correlation. Han Y; Lupitskyy R; Chou TM; Stafford CM; Du H; Sukhishvili S Anal Chem; 2011 Aug; 83(15):5873-80. PubMed ID: 21644591 [TBL] [Abstract][Full Text] [Related]
17. Self-assembled silver nanochains for surface-enhanced Raman scattering. Yang Y; Shi J; Tanaka T; Nogami M Langmuir; 2007 Nov; 23(24):12042-7. PubMed ID: 17963408 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of electromagnetic enhancement of surface enhanced hyper Raman scattering using plasmonic properties of binary active sites in single Ag nanoaggregates. Itoh T; Yoshikawa H; Yoshida K; Biju V; Ishikawa M J Chem Phys; 2009 Jun; 130(21):214706. PubMed ID: 19508086 [TBL] [Abstract][Full Text] [Related]
19. Enhanced sensitivity of a direct SERS technique for Hg2+ detection based on the investigation of the interaction between silver nanoparticles and mercury ions. Ren W; Zhu C; Wang E Nanoscale; 2012 Sep; 4(19):5902-9. PubMed ID: 22899096 [TBL] [Abstract][Full Text] [Related]
20. Influence of dopamine concentration and surface coverage of Au shell on the optical properties of Au, Ag, and Ag(core)Au(shell) nanoparticles. Bu Y; Lee S ACS Appl Mater Interfaces; 2012 Aug; 4(8):3923-31. PubMed ID: 22833686 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]